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Every nonzero G-orbit in V is dense in bV.
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@ O is dense in bV;

@ «(0) is dense in o(V) whenever « is a continuous morphism
from V to a compact topological group;

One might wonder if @ is equivalent to the a priori weaker:

@ O has dense image in any compact quotient group of V.

Counterexample showing that & = @ (F. Jordan)

Take V=R and O = Z U 2rZ. Then O has dense image in every
compact quotient R/aZ. Meanwhile, the morphism o : R — T?
defined by a(v) = (e'¥, e*™) gives a(0) = T x {1} U{1} x T,
which does not contain (V) = T2.
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Let ur be a net of probability measures on bV. Then the following
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@ The pr converge to Haar measure v in the weak+ topology;

@ The Fourier transforms {(ir(uv) = [ w(w)dyr(w) converge
pointwise to the characteristic function of {0} C V*.

Proof.

This characteristic function is 7. So @ says that

ur(f) — n() ()

for every continuous character f(v») = w(u) of bV. Whereas @ says
that (*) holds for every continuous function f on bV. But linear
combinations of continuous characters are uniformly dense in the
continuous functions on bV (Stone-Weierstrass). So @ and @
imply each other. O
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Given an orbit O = Gv in V, we shall construct probability measures
ur concentrated on O and converging to Haar measure 1 on bV.

To this end, let

K : amaximal compact subgroup of G
g=+*t+p :aCartan decomposition of g

: a maximal abelian subalgebra of p
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ur concentrated on O and converging to Haar measure n on bV.

To this end, let

K : amaximal compact subgroup of G
g==¢t+p :aCartan decomposition of g
a C p :amaximal abelian subalgebra of p
C C a* : a Weyl chamber in a*
P C a : the positive cone dual to C
H : an interior point of P (thus (v,H) > O for allv € C\ {0})

and let yr be the image of Haar x (Lebesgue/T) x Haar under

Kx[0,T] xK O bV
(k,t, k") — kexp(tH)k'v

w—— eltw),
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Now we claim that there are nonzero v such that the coefficient
f(k, k") isnot = 0 on K x K. (Then f,, being analytic, will be
nonzero almost everywhere.)
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Indeed, suppose otherwise. Then, writing any g € G in the form
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Indeed, suppose otherwise. Then, writing any g € G in the form
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In particular (u, gv) would be bounded.
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matrix coefficients (z, gy) (since they are linear combinations of

translates of (u, gv), since u and v are cyclic, since V and V* are

irreducible); and this would contradict the noncompactness of G.

So we may pick a vg # 0 such that £, is not = 0. Conjugating if
necessary, we can assume that vy € C, and choose it there so as to
maximize (vp, H). Then our exponent writes:

Fiw (8) = e L (ke k) + e (D))

where e () decays exponentially to zero as t — oo for all k, k'.
Now it is clear that for almost all (k, k') there is a To beyond
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dimensional vector space). Then O has the same closure in bV as
its affine hull O.

Corollary

Let G be a nilpotent Lie group and V a finite-dimensional G-module
of unipotent type. Then any G-orbit O in V has the same closure in
bV as its affine hull .

Remark. The Corollary fails for V not of unipotent type, as one
sees by observing that the orbits of R acting on R? by exp (é 7?)
(i.e., hyperbolas) already have non-dense images in R?/Z2.
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