Introduction

Three lemmas

Proof of the Theorem

Outlook

Bohr Density of Simple Linear Group Orbits*

François Ziegler (GSU)

April 12, 2013

*http://arxiv.org/abs/1211.3783, joint with Roger Howe (Yale).

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the Theorem

G : a noncompact, simple Lie group

/ : a finite-dimensional, irreducible G-module over **R**

 V^* : the dual module (= Hom(V, **R**) with contragredient G-action) bV : the Bohr compactification of V (= dual group of (V^*_{transv} , +)).

We have a dense inclusion $V \hookrightarrow bV$ (= dual map of $V^*_{discrete} \to V^*$). Very "thin" subsets of V can be already dense in bV. Indeed, we shall prove:

Theorem

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the Theorem

Outlook

G : a noncompact, simple Lie group

V : a finite-dimensional, irreducible G-module over **R**

 V^* : the dual module (= Hom(V, R) with contragredient G-action) bV : the Bohr compactification of V (= dual group of ($V^*_{discrete}$, +)).

We have a dense inclusion $V \hookrightarrow bV$ (= dual map of $V^*_{\text{discrete}} \to V^*$). Very "thin" subsets of V can be already dense in bV. Indeed, we shall prove:

Theorem

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the Theorem

Outlook

G : a noncompact, simple Lie group

- V : a finite-dimensional, irreducible G-module over **R**
- V^* : the dual module (= Hom(V, **R**) with contragredient G-action)

V : the Bohr compactification of V (= dual group of ($V_{discrete}^*, +$)).

We have a dense inclusion V \hookrightarrow *b*V (= dual map of V^{*}_{discrete} \rightarrow V^{*}).

Very "thin" subsets of V can be already dense in *b*V. Indeed, we shall prove:

Theorem

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the Theorem

Outlook

G : a noncompact, simple Lie group

- V : a finite-dimensional, irreducible G-module over R
- V^* : the dual module (= Hom(V, **R**) with contragredient G-action)
- bV: the Bohr compactification of V (= dual group of ($V_{discrete}^{*}$, +)).

We have a dense inclusion $V \hookrightarrow bV$ (= dual map of $V^*_{discrete} \to V^*$).

Very "thin" subsets of V can be already dense in *b*V. Indeed, we shall prove:

Theorem

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the

Outlook

- G : a noncompact, simple Lie group
- V : a finite-dimensional, irreducible G-module over R
- V^* : the dual module (= Hom(V, **R**) with contragredient G-action)
- bV: the Bohr compactification of V (= dual group of ($V_{discrete}^{*}$, +)).

We have a dense inclusion V \hookrightarrow *b*V (= dual map of V^{*}_{discrete} \rightarrow V^{*}).

Very "thin" subsets of V can be already dense in bV. Indeed, we shall prove:

Theorem

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the

Outlook

- G : a noncompact, simple Lie group
- V : a finite-dimensional, irreducible G-module over R
- V^* : the dual module (= Hom(V, **R**) with contragredient G-action)
- bV: the Bohr compactification of V (= dual group of ($V_{discrete}^{*}$, +)).

We have a dense inclusion V \hookrightarrow *b*V (= dual map of V^{*}_{discrete} \rightarrow V^{*}).

Very "thin" subsets of V can be already dense in *b***V.** Indeed, we shall prove:

Theorem

Bohr Density of Simple Linear Group Orbits

Let

Introduction

Three lemmas Proof of the

Outlook

- G : a noncompact, simple Lie group
- V : a finite-dimensional, irreducible G-module over R
- V^* : the dual module (= Hom(V, **R**) with contragredient G-action)
- bV: the Bohr compactification of V (= dual group of ($V_{discrete}^{*}$, +)).

We have a dense inclusion $V \hookrightarrow bV$ (= dual map of $V^*_{discrete} \to V^*$).

Very "thin" subsets of V can be already dense in *b***V.** Indeed, we shall prove:

Theorem

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let O be a subset of V. Then the following are equivalent:

) \bigcirc is dense in bV;

α(C) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

 Almost periodic functions on V are determined by their restriction to 0;

Haar measure η on δV is the weaks limit of probability measures μ_{T} concentrated on O.

Proof of $(4 \Rightarrow 1)$ (Katznelson, 1973).

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let $\ensuremath{\mathbb O}$ be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- 3 Almost periodic functions on V are determined by their restriction to O;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $(4 \Rightarrow 1)$ (Katznelson, 1973).

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- 3 Almost periodic functions on V are determined by their restriction to O;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $\mathbf{4} \Rightarrow \mathbf{1}$ (Katznelson, 1973).

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;

Proof of $\mathbf{4} \Rightarrow \mathbf{1}$ (Katznelson, 1973).

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $4 \Rightarrow 1$ (Katznelson, 1973).

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $4 \Rightarrow 1$ (Katznelson, 1973).

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $4 \Rightarrow 1$ (Katznelson, 1973).

By hypothesis $\mu_{\mathrm{T}}(f) \rightarrow \eta(f)$ for every continuous f on $b\mathrm{V}$, where the μ_{T} are concentrated on \mathbb{O} . If f vanishes on the closure of \mathbb{O} in $b\mathrm{V}$ then so do all $\mu_{\mathrm{T}}(|f|)$ and hence also $\eta(|f|)$, which forces f to vanish everywhere. So \mathbb{O} is dense in $b\mathrm{V}$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- 0 is dense in bV;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $4 \Rightarrow 1$ (Katznelson, 1973).

By hypothesis $\mu_{\mathrm{T}}(f) \to \eta(f)$ for every continuous f on $b\mathrm{V}$, where the μ_{T} are concentrated on \mathcal{O} . If f vanishes on the closure of \mathcal{O} in $b\mathrm{V}$ then so do all $\mu_{\mathrm{T}}(|f|)$ and hence also $\eta(|f|)$, which forces f to vanish everywhere. So \mathcal{O} is dense in $b\mathrm{V}$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- 0 is dense in bV;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $4 \Rightarrow 1$ (Katznelson, 1973).

By hypothesis $\mu_{\mathrm{T}}(f) \rightarrow \eta(f)$ for every continuous f on $b\mathrm{V}$, where the μ_{T} are concentrated on \mathcal{O} . If f vanishes on the closure of \mathcal{O} in $b\mathrm{V}$ then so do all $\mu_{\mathrm{T}}(|f|)$ and hence also $\eta(|f|)$, which forces f to vanish everywhere. So \mathcal{O} is dense in $b\mathrm{V}$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- 0 is dense in bV;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;
- Almost periodic functions on V are determined by their restriction to 0;
- Haar measure η on bV is the weak* limit of probability measures μ_T concentrated on O.

Proof of $4 \Rightarrow 1$ (Katznelson, 1973).

By hypothesis $\mu_{\mathrm{T}}(f) \rightarrow \eta(f)$ for every continuous f on $b\mathrm{V}$, where the μ_{T} are concentrated on \mathcal{O} . If f vanishes on the closure of \mathcal{O} in $b\mathrm{V}$ then so do all $\mu_{\mathrm{T}}(|f|)$ and hence also $\eta(|f|)$, which forces f to vanish everywhere. So \mathcal{O} is dense in $b\mathrm{V}$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let $\ensuremath{\mathbb O}$ be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take **V** = **R** and \emptyset = **Z** $\cup 2\pi Z$. Then \emptyset has dense image in every compact quotient **R**/*a*Z. Meanwhile, the morphism α : **R** \rightarrow **T**² defined by $\alpha(v) = (e^{iv}, e^{2\pi i v})$ gives $\overline{\alpha(0)} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\alpha(\mathbf{V}) = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $(2) \Rightarrow (2)$ (F. Jordan)

Take **V** = **R** and \mathcal{O} = **Z** $\cup 2\pi Z$. Then \mathcal{O} has dense image in every compact quotient **R**/*a*Z. Meanwhile, the morphism α : **R** \rightarrow **T**² defined by $\alpha(v) = (e^{iv}, e^{2\pi i v})$ gives $\overline{\alpha(\mathcal{O})} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\overline{\alpha(V)} = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take $V = \mathbf{R}$ and $\mathcal{O} = \mathbf{Z} \cup 2\pi \mathbf{Z}$. Then \mathcal{O} has dense image in every compact quotient $\mathbf{R}/a\mathbf{Z}$. Meanwhile, the morphism $\alpha : \mathbf{R} \to \mathbf{T}^2$ defined by $\alpha(v) = (e^{iv}, e^{2\pi i v})$ gives $\overline{\alpha(\mathcal{O})} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\overline{\alpha(V)} = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take V = **R** and $\mathcal{O} = \mathbf{Z} \cup 2\pi \mathbf{Z}$. Then \mathcal{O} has dense image in every compact quotient $\mathbf{R}/a\mathbf{Z}$. Meanwhile, the morphism $\alpha : \mathbf{R} \to \mathbf{T}^2$ defined by $\alpha(v) = (e^{iv}, e^{2\pi iv})$ gives $\overline{\alpha(\mathcal{O})} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\overline{\alpha(V)} = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take V = **R** and $\mathcal{O} = \mathbf{Z} \cup 2\pi \mathbf{Z}$. Then \mathcal{O} has dense image in every compact quotient $\mathbf{R}/a\mathbf{Z}$. Meanwhile, the morphism $\alpha : \mathbf{R} \to \mathbf{T}^2$ defined by $\alpha(v) = (e^{iv}, e^{2\pi iv})$ gives $\alpha(\mathcal{O}) = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\alpha(V) = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take V = **R** and $\mathcal{O} = \mathbf{Z} \cup 2\pi \mathbf{Z}$. Then \mathcal{O} has dense image in every compact quotient $\mathbf{R}/a\mathbf{Z}$. Meanwhile, the morphism $\alpha : \mathbf{R} \to \mathbf{T}^2$ defined by $\alpha(v) = (e^{iv}, e^{2\pi iv})$ gives $\overline{\alpha(\mathcal{O})} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\alpha(V) = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take V = **R** and \mathcal{O} = **Z** $\cup 2\pi$ **Z**. Then \mathcal{O} has dense image in every compact quotient **R**/*a***Z**. Meanwhile, the morphism $\alpha : \mathbf{R} \to \mathbf{T}^2$ defined by $\alpha(v) = (e^{iv}, e^{2\pi iv})$ gives $\overline{\alpha(\mathcal{O})} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\overline{\alpha(V)} = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 1

Let 0 be a subset of V. Then the following are equivalent:

- **1** \bigcirc is dense in *b*V;
- α(0) is dense in α(V) whenever α is a continuous morphism from V to a compact topological group;

One might wonder if **2** is equivalent to the *a priori* weaker:

2 O has dense image in any compact quotient group of V.

Counterexample showing that $2 \Rightarrow 2$ (F. Jordan)

Take V = **R** and \bigcirc = **Z** $\cup 2\pi$ **Z**. Then \bigcirc has dense image in every compact quotient **R**/*a***Z**. Meanwhile, the morphism α : **R** \rightarrow **T**² defined by $\alpha(v) = (e^{iv}, e^{2\pi iv})$ gives $\overline{\alpha(\bigcirc)} = \mathbf{T} \times \{1\} \cup \{1\} \times \mathbf{T}$, which does not contain $\overline{\alpha(V)} = \mathbf{T}^2$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

The μ₁ converge to Haar measure η in the weak* topology;
The Fourier transforms μ₁(u) = f ω(u) dμ₁(ω) converge pointwise to the characteristic function of {0} < V².

Proof.

This characteristic function is $\hat{\eta}$. So **(2)** says that

 $\mu_{\mathbf{T}}(f) o \eta(f)$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_{T} be a net of probability measures on $\mathit{b}V.$ Then the following are equivalent:

The μ_T converge to Haar measure η in the weak* topology
 The Fourier transforms μ_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

 $\mu_{
m T}(f) o \eta(f)$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

1 The μ_T converge to Haar measure η in the weak* topology;

The Fourier transforms $\hat{\mu}_{T}(u) = \int \omega(u) d\mu_{T}(\omega)$ converge pointwise to the characteristic function of $\{0\} \subset V^*$.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

 $\mu_{\mathrm{T}}(f) o \eta(f)$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms μ̂_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof

This characteristic function is $\hat{\eta}$. So **2** says that

 $\mu_{
m T}(f) o \eta(f)$ (*)

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms µ̂_T(u) = ∫ ω(u) dµ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

 $\mu_{
m T}(f) o \eta(f)$ (*)

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms μ̂_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

 $\mu_{\mathrm{T}}(f) o \eta(f)$ (*)

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms μ̂_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

$$\mu_{\mathrm{T}}(f) \rightarrow \eta(f)$$
 (*)

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms μ̂_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

$$\mu_{\mathrm{T}}(f) \rightarrow \eta(f)$$
 (*)

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms μ̂_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

$$\mu_{\mathrm{T}}(f) \to \eta(f)$$
 (*)

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 2

Let μ_T be a net of probability measures on *b*V. Then the following are equivalent:

- 1 The μ_T converge to Haar measure η in the weak* topology;
- 2 The Fourier transforms μ̂_T(u) = ∫ ω(u) dμ_T(ω) converge pointwise to the characteristic function of {0} ⊂ V*.

Proof.

This characteristic function is $\hat{\eta}$. So **2** says that

$$\mu_{\mathrm{T}}(f) \to \eta(f)$$
 (*)

for every continuous character $f(\omega) = \omega(u)$ of *b*V. Whereas **1** says that (*) holds for every continuous function *f* on *b*V. But linear combinations of continuous characters are uniformly dense in the continuous functions on *b*V (Stone-Weierstrass). So **1** and **2** imply each other.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 3 (Van der Corput, 1921)

Suppose that $F : [a, b] \to \mathbf{R}$ is differentiable, its derivative F' is monotone, and $|F'| \ge 1$ on (a, b). Then $|\int_a^b e^{iF(t)} dt| \le 3$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 3 (Van der Corput, 1921)

Suppose that $F : [a, b] \to \mathbf{R}$ is differentiable, its derivative F' is monotone, and $|F'| \ge 1$ on (a, b). Then $|\int_a^b e^{iF(t)} dt| \le 3$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 3 (Van der Corput, 1921)

Suppose that F : [*a*, *b*] \rightarrow **R** is differentiable, its derivative F' is monotone, and $|F'| \ge 1$ on (*a*, *b*). Then $|\int_a^b e^{iF(t)} dt| \le 3$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Lemma 3 (Van der Corput, 1921)

Suppose that $F : [a, b] \to \mathbf{R}$ is differentiable, its derivative F' is monotone, and $|F'| \ge 1$ on (a, b). Then $|\int_a^b e^{iF(t)} dt| \le 3$.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathcal{O} = \mathbf{G}v$ in V, we shall construct probability measures μ_{T} concentrated on \mathcal{O} and converging to Haar measure η on *b*V.

To this end, let

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $\mathbf{K} \times [\mathbf{0}, \mathbf{T}] \times \mathbf{K} \longrightarrow \mathbf{0} \longrightarrow b\mathbf{V}$

 $(k, t, k') \longmapsto k \exp(tH)k'v$

 $w \longmapsto \mathrm{e}^{\mathrm{i}\langle \cdot, w \rangle}.$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = \mathbf{G} \boldsymbol{v}$ in V, we shall construct probability measures μ_{T} concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

: a maximal compact subgroup of G

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $K \times [0,T] \times K \longrightarrow \emptyset \longrightarrow bV$

 $(k, t, k') \longmapsto k \exp(tH)k'v$

 $w\longmapsto \mathrm{e}^{\mathrm{i}\langle\cdot,w
angle}.$

Introductior

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathcal{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathcal{O} and converging to Haar measure η on *b*V.

To this end, let

K : a maximal compact subgroup of G

= t + p : a Cartan decomposition of g

: a maximal abelian subalgebra of p

: a Weyl chamber in a

: the positive cone dual to C

: an interior point of P (thus (v, H) > 0 for all $v \in \mathbb{C} \setminus \{0\}$)

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $X \times [0,T] \times K \longrightarrow \mathfrak{O} \longrightarrow bV$

 $(k, t, k') \longmapsto k \exp(tH)k'v$

 $w\longmapsto \mathrm{e}^{\mathrm{i}\langle\cdot,w
angle}.$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on bV. To this end, let

K : a maximal compact subgroup of G

 $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}

: a maximal abelian subalgebra of \mathfrak{p}

 $\mathbb{C} \subset \mathfrak{a}^*$: a Weyl chamber in \mathfrak{a}^*

 $P \subset \mathfrak{a}$: the positive cone dual to C

 $E \subseteq an interior point of P (thus (v, E) > 0 for all <math>v \in C \setminus \{0\}$)

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $\mathbf{K} \times [\mathbf{0}, \mathbf{T}] \times \mathbf{K} \longrightarrow \mathfrak{O} \longrightarrow b\mathbf{V}$

 $(k, t, k') \longmapsto k \exp(tH)k'v$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

K : a maximal compact subgroup of G

- $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{u} \subset \mathfrak{p}^-$: a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^*~:$ a Weyl chamber in \mathfrak{a}^*
 - $P \subset \mathfrak{a}_{-}$: the positive cone dual to C
 - H $\,$: an interior point of P (thus (v, H) > 0 for all v \in C \ {0})

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $\begin{array}{l} \mathrm{K} \times [0,\mathrm{T}] \times \mathrm{K} \longrightarrow 0 \longrightarrow b\mathrm{V} \\ (k,t,k') \longmapsto k \exp(t\mathrm{H})k'v \end{array}$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\subset \mathfrak{p}_{-}$: a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P \subset \mathfrak{a}$: the positive cone dual to C
 - H $\,$: an interior point of P (thus (v, H) > 0 for all v \in C \ {0})

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{a} \subset \mathfrak{p}^-$: a maximal abelian subalgebra of \mathfrak{p}
 - $C \subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P\subset \mathfrak{a}_{-}$: the positive cone dual to C
 - H $\,$: an interior point of P (thus $\langle \nu, H \rangle > 0$ for all $\nu \in C \setminus \{0\}$)

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $X \times [0,T] \times K \longrightarrow \emptyset \longrightarrow bV$

 $(k, t, k') \longmapsto k \exp(tH)k'v$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{a} \subset \mathfrak{p}^-$: a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P \subset \mathfrak{a}$: the positive cone dual to C
 - H $\,$: an interior point of P (thus $\langle \nu, H \rangle > 0$ for all $\nu \in C \setminus \{0\}$)

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $\mathbf{K} imes [0, \mathbf{T}] imes \mathbf{K} \longrightarrow \mathbb{O} \longrightarrow b\mathbf{V}$ $(k, t, k') \longmapsto k \exp(t\mathbf{H})k'v$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{a} \subset \mathfrak{p} \quad :$ a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P\subset \mathfrak{a}_{-}$: the positive cone dual to C

H $\,\,:\,$ an interior point of P (thus $\langle \nu,H
angle>0$ for all $\nu\in C\setminus\{0\}$)

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $X \times [0, T] \times K \longrightarrow \emptyset \longrightarrow bV$ $(k \ t \ k') \longmapsto k \exp(tH)k'v$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{a} \subset \mathfrak{p} \quad :$ a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P\subset \mathfrak{a}_{-}$: the positive cone dual to C
 - H~~: an interior point of P (thus $\langle\nu,H\rangle>0$ for all $\nu\in C\setminus\{0\})$

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

 $\mathbb{I} \times [0, T] \times \mathbb{K} \longrightarrow \mathbb{O} \longrightarrow bV$

 $(k, t, k') \longmapsto k \exp(tH)k'v$

$$w \longmapsto \mathrm{e}^{\mathrm{i} \langle \cdot, w \rangle}.$$

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{a} \subset \mathfrak{p} \quad :$ a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P\subset \mathfrak{a}_{-}$: the positive cone dual to C
 - H_{-} : an interior point of P (thus $\langle\nu,H\rangle>0$ for all $\nu\in C\setminus\{0\})$

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

Given an orbit $\mathfrak{O} = Gv$ in V, we shall construct probability measures μ_T concentrated on \mathfrak{O} and converging to Haar measure η on *b*V. To this end, let

- K : a maximal compact subgroup of G
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}_{-}$: a Cartan decomposition of \mathfrak{g}
 - $\mathfrak{a} \subset \mathfrak{p} \quad :$ a maximal abelian subalgebra of \mathfrak{p}
 - $C\subset \mathfrak{a}^* \ :$ a Weyl chamber in \mathfrak{a}^*
 - $P\subset \mathfrak{a}_{-}$: the positive cone dual to C
 - H_{-} : an interior point of P (thus $\langle\nu,H\rangle>0$ for all $\nu\in C\setminus\{0\})$

and let μ_T be the image of Haar \times (Lebesgue/T) \times Haar under

$$\begin{array}{ccc} \mathsf{K} \times [0, \mathsf{T}] \times \mathsf{K} & \longrightarrow & \circlearrowright & \mathsf{bV} \\ & & (k, t, k') \longmapsto k \exp(t\mathsf{H}) k' v \\ & & w \longmapsto & \mathsf{e}^{\mathsf{i} \langle \cdot, w \rangle}. \end{array}$$

Introduction Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_0^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k \exp(t\mathrm{H})k'v
angle} dt o 0.$$

To this end, let

 $\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v \rangle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over R) on V. Thus, letting E_v be the projector of V onto the weight v eigenspace of a, we can write

$$\mathbb{F}_{kk'}(t) = \sum_{\mathsf{v}\in\mathfrak{a}^*} \underbrace{\langle u, k\mathbb{E}_\mathsf{v}k'v
angle}_{=:\;f_\mathsf{v}(k,k')} \mathrm{e}^{\langle\mathsf{v},\mathsf{H}
angle t}$$

Introduction

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \; rac{1}{\mathrm{T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k \exp(t\mathrm{H})k'v
angle} dt o 0.$$
 (*)

To this end, let

 $\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v \rangle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_{λ} be the projector of V onto the weight ν eigenspace of a, we can write

$$\mathbb{F}_{kk'}(t) = \sum_{\mathsf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathbb{E}_\mathsf{v} k' v \rangle}_{=: \; f_\mathsf{v}(k,k')} \mathrm{e}^{\langle \mathsf{v}, \mathsf{H}
angle t}$$

Introduction

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k\exp(t\mathrm{H})k'v
angle} dt o 0.$$
 (*)

To this end, let

 $F_{kk'}(t) = \langle u, k \exp(tH) k' v \rangle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_{γ} be the projector of V onto the weight γ eigenspace of a, we can write

$$\mathrm{F}_{kk'}(t) = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathbb{E}_{\mathbf{v}} k' v \rangle}_{=: f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \mathrm{H}
angle t}$$

Introduction Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k\exp(t\mathrm{H})k'v
angle} dt o 0.$$
 (*)

To this end, let

 $\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v \rangle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_v be the projector of V onto the weight v eigenspace of a, we can write

$$\mathrm{F}_{kk'}(t) = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathrm{E}_{\mathbf{v}} k' v \rangle}_{=: f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \mathrm{H}
angle t}$$

Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_0^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k \exp(t\mathrm{H})k'v
angle} dt o 0. \qquad (*)$$

To this end, let

$$\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v \rangle$$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_v be the projector of V onto the weight v eigenspace of a, we can write

$$F_{kk'}(t) = \sum_{v \in \mathfrak{a}^*} \underbrace{\langle u, k \mathbb{E}_v k' v \rangle}_{=: f_v(k,k')} e^{\langle v, \mathbf{H} \rangle t}$$

Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k \exp(t\mathrm{H})k'v
angle} dt o 0.$$

To this end, let

 $\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v
angle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_{ν} be the projector of V onto the weight ν eigenspace of a, we can write

$$\mathrm{F}_{kk'}(t) = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathrm{E}_{\mathbf{v}} k' v \rangle}_{=: f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \mathrm{H}
angle t}$$

Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k \exp(t\mathrm{H})k'v
angle} dt o 0.$$

To this end, let

 $\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v
angle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_{ν} be the projector of V onto the weight ν eigenspace of a, we can write

$$\mathrm{F}_{kk'}(t) = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathrm{E}_{\mathbf{v}} k' v \rangle}_{=: f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \mathrm{H}
angle t}$$

Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

There remains to show that as $T \to \infty$ we have, for every nonzero $u \in V^*$,

$$\hat{\mu}_{\mathrm{T}}(u) = \int_{\mathrm{K} imes\mathrm{K}} dk \; dk' \, rac{1}{\mathrm{T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{i}\langle u,k \exp(t\mathrm{H})k'v
angle} dt o 0. \qquad (*)$$

To this end, let

 $\mathbf{F}_{kk'}(t) = \langle u, k \exp(t\mathbf{H}) k' v
angle$

denote the exponent in (*). We are going to show that Lemma 3 applies to almost every $F_{kk'}$. In fact, it is well known that a acts diagonalizably (over **R**) on V. Thus, letting E_{ν} be the projector of V onto the weight ν eigenspace of a, we can write

$$\mathrm{F}_{kk'}(t) = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathrm{E}_{\mathbf{v}} k' v \rangle}_{=: f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \mathrm{H}
angle t}$$

Introduction Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_\mathbf{v}(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize (v_0, H) . Then our exponent writes:

 $\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$

Introduction Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize (v_0, H) . Then our exponent writes:

 $\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$

Introduction

Proof of the Theorem

Outlook

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize (v_0, H) . Then our exponent writes:

 $\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$

Introduction Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

 $\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$

Introduction Three lemma

Proof of the Theorem

Outlook

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u, gv
angle = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathrm{E}_{\mathbf{v}} k' v
angle}_{f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \log(a)
angle} = \underbrace{\langle u, k \mathrm{E}_0 k' v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize (v_0, H) . Then our exponent writes:

 $\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

 $\mathrm{F}_{kk'}(t) = \mathrm{e}^{(\mathrm{v}_0,\mathrm{H})\,t}\left\{f_{\mathrm{v}_0}(k,k') + \mathrm{arepsilon}_{kk'}(t)
ight\}$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

 $\mathbb{F}_{kk'}(t)=\mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t}\left\{f_{\mathrm{v}_0}(k,k')+arepsilon_{kk'}(t)
ight\}$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

$$\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u, gv
angle = \sum_{\mathbf{v} \in \mathfrak{a}^*} \underbrace{\langle u, k \mathrm{E}_{\mathbf{v}} k' v
angle}_{f_{\mathbf{v}}(k,k')} \mathrm{e}^{\langle \mathbf{v}, \log(a)
angle} = \underbrace{\langle u, k \mathrm{E}_0 k' v
angle}_{f_0(k,k')}$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

 $\mathbb{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

$$\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + \mathrm{arepsilon}_{kk'}(t)
ight\}$$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

$$\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + \mathrm{arepsilon}_{kk'}(t)
ight\}$$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Proof of the Theorem

Indeed, suppose otherwise. Then, writing any $g \in G$ in the form kak' (KAK decomposition, where A = exp(a)), we would have

$$\langle u,gv
angle = \sum_{\mathbf{v}\in\mathfrak{a}^*} \underbrace{\langle u,k\mathrm{E}_\mathbf{v}k'v
angle}_{f_\mathbf{v}(k,k')} \mathrm{e}^{\langle\mathbf{v},\log(a)
angle} = \underbrace{\langle u,k\mathrm{E}_0k'v
angle}_{f_0(k,k')}.$$

In particular $\langle u, gv \rangle$ would be bounded. But then so would be all matrix coefficients $\langle x, gy \rangle$ (since they are linear combinations of translates of $\langle u, gv \rangle$, since u and v are cyclic, since V and V^{*} are irreducible); and this would contradict the noncompactness of G.

So we may pick a $v_0 \neq 0$ such that f_{v_0} is not $\equiv 0$. Conjugating if necessary, we can assume that $v_0 \in C$, and choose it there so as to maximize $\langle v_0, H \rangle$. Then our exponent writes:

$$\mathrm{F}_{kk'}(t) = \mathrm{e}^{\langle \mathrm{v}_0,\mathrm{H}
angle t} \left\{ f_{\mathrm{v}_0}(k,k') + arepsilon_{kk'}(t)
ight\}$$

where $\varepsilon_{kk'}(t)$ decays exponentially to zero as $t \to \infty$ for all k, k'. Now it is clear that for almost all (k, k') there is a T₀ beyond which $|F'_{kk'}| \ge 1$ and $F''_{kk'} \ne 0$.

Bohr Density of Simple Linear Group Orbits

Three lemma

Proof of the Theorem

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

So Lemma 3 applies and gives

$$\int_{\mathsf{T}_0}^{\mathsf{T}} \mathsf{e}^{\mathsf{i} \mathsf{F}_{kk'}(t)} dt \bigg| \leqslant 3 \qquad \forall \, \mathsf{T}.$$

Therefore we have $\lim_{T\to\infty} \frac{1}{T} \int_0^T e^{iF_{kk'}(t)} dt = 0$ for almost all (k, k'), whence the conclusion (*) by dominated convergence.

Introduction

Three lemmas

Proof of the Theorem

Outlook

Proof of the Theorem

So Lemma 3 applies and gives

$$\int_{\mathsf{T}_0}^{\mathsf{T}} \mathsf{e}^{\mathsf{i} \mathsf{F}_{kk'}(t)} \, dt \, \bigg| \leqslant 3 \qquad \forall \, \mathsf{T}.$$

Therefore we have $\lim_{T\to\infty} \frac{1}{T} \int_0^T e^{iF_{kk'}(t)} dt = 0$ for almost all (k, k'), whence the conclusion (*) by dominated convergence. \Box

Introduction Three lemma Proof of the

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let O be the image of any polynomial map $\mathbf{R}^d \to V$ (V: finitedimensional vector space). Then O has the same closure in bV as its affine hull \widehat{O} .

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\left(\begin{smallmatrix}t & 0\\ 0 & -t\end{smallmatrix}\right)$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbb{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\left(\begin{smallmatrix}t & 0\\ 0 & -t\end{smallmatrix}\right)$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

meorem

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \emptyset be the image of any polynomial map $\mathbf{R}^d \to V$ (V: finitedimensional vector space). Then \emptyset has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\begin{pmatrix} t & 0 \\ 0 & -t \end{pmatrix}$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbb{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type.* Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\begin{pmatrix}t & 0\\ 0 & -t\end{pmatrix}$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

Proof of the Theorem

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbf{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of R acting on R^2 by exp $\begin{pmatrix} t & 0 \\ 0 & -t \end{pmatrix}$ (i.e., hyperbolas) already have non-dense images in R^2/Z^2 .

Introduction Three lemma

Proof of the Theorem

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbb{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module of unipotent type. Then any G-orbit \bigcirc in V has the same closure in bV as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of R acting on R^2 by $\exp\left(\begin{smallmatrix} t & -0 \\ 0 & -t \end{smallmatrix} \right)$ (i.e., hyperbolas) already have non-dense images in R^2/Z^2 .

Introduction Three lemma

Proof of the Theorem

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbb{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \mathcal{O} in V has the same closure in *b*V as its affine hull $\widehat{\mathcal{O}}$.

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\begin{pmatrix}t & 0\\ 0 & -t\end{pmatrix}$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

Proof of the Theorem

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbb{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\begin{pmatrix}t & 0\\ 0 & -t\end{pmatrix}$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbf{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbb{R}^2 by $\exp\begin{pmatrix}t & 0\\ 0 & -t\end{pmatrix}$ (i.e., hyperbolas) already have non-dense images in $\mathbb{R}^2/\mathbb{Z}^2$.

Introduction Three lemma

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbf{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbf{R}^2 by $\exp\left(\begin{smallmatrix}t&0\\0&-t\end{smallmatrix}\right)$ (i.e., hyperbolas) already have non-dense images in $\mathbf{R}^2/\mathbf{Z}^2$.

Introduction Three lemma

Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let \mathbb{O} be the image of any polynomial map $\mathbf{R}^d \to V$ (V: finitedimensional vector space). Then \mathbb{O} has the same closure in *b*V as its affine hull $\widehat{\mathbb{O}}$.

Corollary

Let G be a *nilpotent* Lie group and V a finite-dimensional G-module *of unipotent type*. Then any G-orbit \bigcirc in V has the same closure in *b*V as its affine hull \bigcirc .

Remark. The Corollary fails for V not of unipotent type, as one sees by observing that the orbits of **R** acting on \mathbf{R}^2 by $\exp\left(\begin{smallmatrix}t&0\\0&-t\end{smallmatrix}\right)$ (i.e., hyperbolas) already have non-dense images in $\mathbf{R}^2/\mathbf{Z}^2$.