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Let

G : a noncompact, simple Lie group

V : a finite-dimensional, irreducible G-module over R

V∗ : the dual module (= Hom(V, R) with contragredient G-action)

bV : the Bohr compactification of V (= dual group of (V∗discrete,+)).

We have a dense inclusion V ↪→ bV (= dual map of V∗discrete → V∗).

Very “thin” subsets of V can be already dense in bV. Indeed, we
shall prove:

Theorem

Every nonzero G-orbit in V is dense in bV.
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Lemma 1

Let O be a subset of V. Then the following are equivalent:

1 O is dense in bV;

2 α(O) is dense in α(V) whenever α is a continuous morphism
from V to a compact topological group;

3 Almost periodic functions on V are determined by their
restriction to O;

4 Haar measure η on bV is the weak∗ limit of probability
measures μT concentrated on O.

Proof of 4 ⇒ 1 (Katznelson, 1973).

By hypothesis μT(f )→ η(f ) for every continuous f on bV, where
the μT are concentrated on O. If f vanishes on the closure of O in
bV then so do all μT(|f |) and hence also η(|f |), which forces f to
vanish everywhere. So O is dense in bV.
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Let O be a subset of V. Then the following are equivalent:

1 O is dense in bV;

2 α(O) is dense in α(V) whenever α is a continuous morphism
from V to a compact topological group;

One might wonder if 2 is equivalent to the a priori weaker:

2’ O has dense image in any compact quotient group of V.

Counterexample showing that 2’ ; 2 (F. Jordan)

Take V = R and O = Z ∪ 2πZ. Then O has dense image in every
compact quotient R/aZ. Meanwhile, the morphism α : R→ T2

defined by α(v) = (eiv , e2πiv ) gives α(O) = T× {1} ∪ {1}× T,
which does not contain α(V) = T2.
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Let μT be a net of probability measures on bV. Then the following
are equivalent:

1 The μT converge to Haar measure η in the weak∗ topology;

2 The Fourier transforms μ̂T(u) =
∫
ω(u)dμT(ω) converge

pointwise to the characteristic function of {0} ⊂ V∗.

Proof.

This characteristic function is η̂. So 2 says that

μT(f )→ η(f ) (∗)

for every continuous character f (ω) = ω(u) of bV. Whereas 1 says
that (∗) holds for every continuous function f on bV. But linear
combinations of continuous characters are uniformly dense in the
continuous functions on bV (Stone-Weierstrass). So 1 and 2

imply each other.
4 / 10
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Lemma 3 (Van der Corput, 1921)

Suppose that F : [a , b]→ R is differentiable, its derivative F′ is
monotone, and |F′| > 1 on (a , b). Then |

∫ b
a eiF(t)dt | 6 3.

Proof: a clever integration by parts (Calculus II).
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Proof of the Theorem

Given an orbit O = Gv in V, we shall construct probability measures
μT concentrated on O and converging to Haar measure η on bV.

To this end, let

K : a maximal compact subgroup of G

g = k + p : a Cartan decomposition of g

a ⊂ p : a maximal abelian subalgebra of p

C ⊂ a∗ : a Weyl chamber in a∗

P ⊂ a : the positive cone dual to C

H : an interior point of P (thus 〈ν, H〉 > 0 for all ν ∈ C \ {0})

and let μT be the image of Haar × (Lebesgue/T) × Haar under

K× [0, T]× K O bV

(k , t , k ′) k exp(tH)k ′v

w ei〈·,w 〉.
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Proof of the Theorem

There remains to show that as T→∞ we have, for every nonzero
u ∈ V∗,

μ̂T(u) =
∫

K×K
dk dk ′

1
T

∫ T

0
ei〈u ,k exp(tH)k ′v 〉dt → 0. (∗)

To this end, let
Fkk ′(t) = 〈u , k exp(tH)k ′v 〉

denote the exponent in (∗). We are going to show that Lemma 3
applies to almost every Fkk ′ . In fact, it is well known that a acts
diagonalizably (over R) on V. Thus, letting Eν be the projector of V
onto the weight ν eigenspace of a, we can write

Fkk ′(t) =
∑
ν∈a∗
〈u , kEνk ′v 〉︸ ︷︷ ︸
=: fν(k ,k ′)

e〈ν,H〉t .

Now we claim that there are nonzero ν such that the coefficient
fν(k , k ′) is not ≡ 0 on K× K. (Then fν, being analytic, will be
nonzero almost everywhere.)
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Proof of the Theorem

Indeed, suppose otherwise. Then, writing any g ∈ G in the form
kak ′ (KAK decomposition, where A = exp(a)), we would have

〈u , gv 〉 =
∑
ν∈a∗
〈u , kEνk ′v 〉︸ ︷︷ ︸

fν(k ,k ′)

e〈ν,log(a)〉
= 〈u , kE0k ′v 〉︸ ︷︷ ︸

f0(k ,k ′)

.

In particular 〈u , gv 〉 would be bounded. But then so would be all
matrix coefficients 〈x , gy〉 (since they are linear combinations of
translates of 〈u , gv 〉, since u and v are cyclic, since V and V∗ are
irreducible); and this would contradict the noncompactness of G.

So we may pick a ν0 6= 0 such that fν0 is not ≡ 0. Conjugating if
necessary, we can assume that ν0 ∈ C, and choose it there so as to
maximize 〈ν0, H〉. Then our exponent writes:

Fkk ′(t) = e〈ν0,H〉t �fν0(k , k ′) + εkk ′(t)
	

where εkk ′(t) decays exponentially to zero as t →∞ for all k , k ′.
Now it is clear that for almost all (k , k ′) there is a T0 beyond
which |F′kk ′ | > 1 and F′′kk ′ 6= 0.
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So Lemma 3 applies and gives∣∣∣∣∫ T

T0

eiFkk′ (t)dt
∣∣∣∣ 6 3 ∀T.

Therefore we have limT→∞
1
T

∫ T
0 eiFkk′ (t)dt = 0 for almost all (k , k ′),

whence the conclusion (∗) by dominated convergence.
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Outlook

For perspective, our result should be compared to

Theorem (Z., 1993)

Let O be the image of any polynomial map Rd → V (V: finite-
dimensional vector space). Then O has the same closure in bV as
its affine hull

_
O.

Corollary

Let G be a nilpotent Lie group and V a finite-dimensional G-module
of unipotent type. Then any G-orbit O in V has the same closure in
bV as its affine hull

_
O.

Remark. The Corollary fails for V not of unipotent type, as one
sees by observing that the orbits of R acting on R2 by exp

�

t 0
0 −t

�

(i.e., hyperbolas) already have non-dense images in R2/Z2.
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