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Abstract: Ratiu–Z.† established “Frobenius reciprocity” as a bijection t between certain
symplectically reduced spaces (which need not be manifolds), and conjectured:

• t is a diffeomorphism, relative to the subquotient diffeologies of these spaces;
• t respects the reduced diffeological 2-forms they may (or might not) carry.

We prove this, and give new sufficient conditions for the reduced forms to exist.

*arXiv:2403.3927, joint with Gabriele Barbieri and Jordan Watts.
†arXiv:2007.9434, building on ideas of Guillemin–Sternberg (1983).
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§1. Symplectic reduction

Let (X,ω,Φ) be a Hamiltonian G-space (G: Lie group, Φ: equivariant
moment map). The reduced space

X//G := Φ−1(0)/G ♠

need not be a manifold; but it has a natural (“subquotient”) diffeology.
It may or might not carry a reduced 2-form:

Definition
We say that X//G carries a reduced 2-form if there is a (diffeological)
2-form ωX//G such that j ∗ω = π∗ωX//G, where

Φ
−1(0) X

X//G.

j

π

Note: we will see that if ωX//G exists, then it is unique (and closed).
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§1. Symplectic reduction

Important special case (which sounds more general):

Example: HomG(X1, X2) (Guillemin-Sternberg 1982)

This is
HomG(X1, X2) := (X−

1 × X2)//G ♡

where (Xi ,ωi ,Φi) are Hamiltonian G-spaces and X− := (X,−ω,−Φ).
So the product here has diagonal G-action, 2-form ω2 − ω1, and
moment map Φ(x1, x2) = Φ2(x2) − Φ1(x1).

• Note that ♡ boils down to X2//G when (X1,ω1,Φ1) = ({0}, 0, 0);
so asking when it carries a reduced 2-form includes the original
question about ♠.

• More generally, Guillemin–Sternberg took for X1 a coadjoint orbit
G(μ), and noted that ♡ then boils down to the space Φ−1

2 (μ)/Gμ
of Marsden–Weinstein: this is their famous “shifting trick”.
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Let X be a manifold, and write τn for the Euclidean topology of Rn .
Define P :=

⋃
n∈N, U∈τn C∞(U, X). This satisfies:

(D1) Covering. All constant maps Rn → X are in P, for all n .

(D2) Locality. Let V P→ X be a map with V ∈ τn . If every point of V
has an open neighborhood U such that P|U ∈ P, then P ∈ P.

(D3) Smooth compatibility. Let U
ψ→ V P→ X be maps with (U, V) ∈

τm × τn . If P ∈ P and ψ ∈ C∞(U, V), then P ◦ ψ ∈ P.

Definitions
Let X be a set. A diffeology on X is a subset P of

⋃
n∈N, U∈τn Maps(U, X)

satisfying (D1–D3). We call its members with domain U ∈ τn , n-plots.

A map (X,P) F→ (Y,Q) of diffeological spaces (: sets with diffeologies)
is called smooth if P ∈ P implies F ◦ P ∈ Q.

If (X,P) id→ (X,Q) is smooth, i.e. P ⊂ Q, we call P finer and Q coarser.

E.g.: {locally constant maps} =: Pdiscrete ⊂ P ⊂ Pcoarse := {all maps}.

3 / 20
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Y

U XP

i ◦ P i

X

u ∈ V U Y

s
R

Q

So every manifold has a canonical diffeology. But also:

• Let Y be a diffeological space and i : X → Y an injection. Then X
has a coarsest diffeology making i smooth, the subset diffeology.
Its plots are the maps P : U → X such that i ◦ P is a plot of Y.

Universal property: A map F to X is smooth iff i ◦ F is smooth.

• Let X be a diffeological space and s : X → Y a surjection. Then Y
has a finest diffeology making s smooth, the quotient diffeology.
Its n-plots are the maps Q : U → Y that have around each u ∈ U
a ‘local lift’: an n-plot R : V → X with u ∈ V ⊂ U and Q|V = s ◦ R.

Universal property: A map F from Y is smooth iff F ◦ s is smooth.
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§2. Diffeology

• The promised subquotient diffeology of X//G = Φ−1(0)/G results:
take subset diffeology on Φ−1(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

• Any map F : X → Y between diffeological spaces can be factored

X Y

X/∼ F(X),

s

F

Ḟ

i F = i ◦ Ḟ ◦ s ,

where s = quotient map by the equivalence relation ‘F(x1) = F(x2)’,
Ḟ = bijection of that quotient with F(X), i = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/∼ (resp. F(X)),
the universal properties we saw imply: F smooth ⇔ Ḟ smooth.

Definitions
• F is strict if both Ḟ and Ḟ−1 are smooth (i.e., Ḟ is a diffeomorphism).
• An induction is a strict injection. Example: inclusion of a subset.
• A subduction is a strict surjection. Example: projection to a quotient.
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Ḟ = bijection of that quotient with F(X), i = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/∼ (resp. F(X)),
the universal properties we saw imply: F smooth ⇔ Ḟ smooth.

Definitions
• F is strict if both Ḟ and Ḟ−1 are smooth (i.e., Ḟ is a diffeomorphism).
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Interlude: a historical question.

I have seen “strict” defined for

1. {topological groups, continuous morphisms}: Bourbaki 1960,

2. {diffeological groups, smooth morphisms}: Donato 1984,

3. {diffeological spaces, smooth maps}: Souriau 1985,

4. {topological spaces, continuous maps}: Bourbaki 2016. (!)

Question
Is 4. really nowhere to be found before 1985?

6 / 20

https://doi.org/10.1007/978-3-540-33982-3
http://www.numdam.org/item/AST_1985__S131__341_0
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Let us call ordinary the k -forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

Definitions (Diffeological Cartan–de Rham calculus)

Let X and Y be diffeological spaces.

• A k-form α on Y is a functional which sends each plot P : V → Y
to an ordinary k -form on V, denoted P∗

α. As compatibility, we
require: if ψ ∈ C∞(U, V) (so P ◦ ψ is another plot), then

(P ◦ ψ)∗α = ψ∗P∗
α, ψ

∗ : ordinary pull-back.

• Its pull-back F∗
α by a smooth map F : X → Y is the k -form on X

defined by: if P is a plot of X (so F ◦ P is a plot of Y), then

P∗F∗
α = (F ◦ P)∗α, F∗ : being defined.

• Its exterior derivative dα is the (k + 1)-form defined for all plots
P of Y by P∗dα = dP∗

α, with ordinary d on the right-hand side.
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• Its exterior derivative dα is the (k + 1)-form defined for all plots
P of Y by P∗dα = dP∗
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There is a basic criterion for when a k -form descends to a quotient:

Theorem (Souriau’s criterion, 1985)
Let s : X → Y be a subduction, α a k -form on X. In order that α = s∗β
for some β on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

s ◦ P = s ◦ Q ⇒ P∗
α = Q∗

α. ♢

Moreover, β is then unique.

Comments on the proof. Necessity is clear: if α = s∗β, we have

P∗
α = P∗s∗β = (s ◦ P)∗β,

Q∗
α = Q∗s∗β = (s ◦ Q)∗β

by definition of s∗; ♢ follows. Proving the rest takes about 2 pages.
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All diffeological notions used in §1 have now been defined.

Existence of ωX//G: Prior State of the Art

• If the G-action on the level C = Φ−1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman–Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon–Watts 2016).
So X//G carries a reduced 2-form in this case.

• Note: locally free means that the infinitesimal stabilizer gx is zero
for all x ∈ C. As Im(DΦ(x )) = annihilator(gx ), it follows that 0 is
a regular value, so C is a manifold.

• Of course, if the G-action on C is free and proper, then X//G itself
is a manifold with a symplectic 2-form (Marsden–Weinstein 1974).

Briefly, §§4–6 will improve on this by showing: it suffices to assume
locally free or proper, or strict.
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Let a diffeological group G act on a diffeological space X. We consider
the map

θ : G × X → X × X, θ(g , x ) = (x , g(x )).

Definition
The G-action is strict if θ is a strict map (§2).

Equivalently: For any two plots P, Q : U → X with G(Q(u)) = G(P(u))
and u0 ∈ U, there are an open set V ∋ u0 and plot R : V → G such that

Q(u) = R(u)(P(u)) ∀u ∈ V.

• A free action (θ injective) is strict iff it is principal (: θ induction).
Example: any free action of a Lie G on a manifold (Iglesias 1985).

• A transitive action (θ surjective) is strict iff θ is a subduction.
Example: any transitive action of a Lie G on a manifold.

• Non-free, non-transitive can easily be non-strict: e.g. SO(2) ⟲ R2.
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Theorem 1
In the setting of §1, suppose that the G-action on C = Φ−1(0) is strict.
Then X//G carries a reduced 2-form.

Comments on the proof. Our above “smooth division”

Q(u) = R(u)(P(u))

is just what’s needed for a straightforward application of Souriau’s
criterion ♢ (using elementary properties of moment maps). Subtler
results (§5, §6) tend to use ♢ in tandem with e.g. Baire category.
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Example: IndG
H Y

This is
IndG

H Y := (T∗G × Y)//H = ψ−1(0)/H ♣

where: G is a Lie group, H is an arbitrary subgroup (hence canonically
also a Lie group: Bourbaki 1972), (Y,ωY,Ψ) is a Hamiltonian H-space,
and L := T∗G × Y is the Hamiltonian G × H-space with action
(g , h)(p, y) = (gph−1, h(y)) and moment map φ × ψ : L → g∗ × h∗,

�

φ(p, y) = pq−1

ψ(p, y) = Ψ(y) − q−1p |h
(p ∈ T∗

qG).

• When H is closed, ♣ is a Marsden–Weinstein reduced manifold,
with a residual G-action and moment map ΦL//H : IndG

H Y → g∗.

• When H is not closed, the H-action on ψ−1(0) is still strict: so
Theorem 1 yields a reduced 2-form ωL//H, and we have a “para-
symplectic” induced Hamiltonian G-space (IndG

H Y,ωL//H,ΦL//H).
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Instructive special case: IndG
H{0}

This is (T∗G)//H, the reduction of T∗G by the ‘right’ action of H.

• When H is closed, it is well known (Kummer–Marsden–Satzer)
that (T∗G)//H = T∗(G/H) with its canonical 2-form and G-action.

• When H is not closed, Iglesias-Zemmour (2010) gave meaning
to the right-hand side by defining, for any diffeological space X,
a “cotangent space” T∗(X) with a canonical 2-form d Liouv and
Hamiltonian action of Diff(X).

We can ask, then, if the equality survives. It does at least for dense H:

Theorem 2
Let G be a Lie group, H any dense subgroup. Then (T∗G)//H = T∗(G/H)
as diffeological, parasymplectic Hamiltonian G-spaces.

Example: G the 2-torus, H an irrational winding, G/H = Tα.
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Comments on the proof. A key step in Iglesias-Zemmour’s definition is

T∗
x (X) := Ω1(X)/{1-forms vanishing at x}.

For that we have, with Π : G → G/H,

Proposition

For H dense in G, Π∗ is a linear bijection Ω1(G/H) ∼→ annihilator(h).

(Surjectivity is by another application of Souriau’s ♢.) In fact, it is not
hard to generalize this into

Theorem 3 (B. Clark–Z.)
Let G be a Lie group, H any dense subgroup. Then h ⊂ g is an ideal, and

Ω
•(G/H) =

∧•(g/h)∗, H•
dR(G/H) = H•(g/h)

(Lie algebra cohomology à la Chevalley–Eilenberg).
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Theorem 4
In the setting of §1, suppose the G-action on C = Φ−1(0) is locally free
(i.e. all x ∈ C have infinitesimal stabilizer gx = {0}) and G is connected.
Then X//G carries a reduced 2-form.

Comments on the proof. Under the hypotheses, standard properties of
the moment map:

Ker(DΦ(x )) = g(x )ω, Im(DΦ(x )) = annihilator(gx )

readily imply that 1) 0 is a regular value of Φ, 2) C is a submanifold,
3) in C the G-orbits are the leaves of a foliation F, 4) ω|C := j ∗ω is
basic for F, i.e., G-invariant with g(x ) ⊂ Ker(ω|C). A theorem on
foliations by Hector et al. (2011) then implies the result.
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Recall that the action of a Lie group on a manifold is called proper if
the map θ (§4) is proper, i.e., compact sets have compact preimages.

Theorem 5
In the setting of §1, suppose that the G-action on X is proper. (Example:
G compact.) Then X//G carries a reduced 2-form ωX//G.

Comments on the proof. For proper actions, Sjamaar–Lerman–Bates
(1991, 1997) showed that X//G = C/G is a ‘stratified symplectic space’,
i.e. (among other things) a disjoint union of symplectic manifolds
(Ct/G,ωt) indexed by orbit types t . Our proof crucially uses the ωt to
show that j ∗ω satisfies Souriau’s criterion ♢. The resulting (global)
ωX//G actually induces every ωt , as the following corollary states.

Corollary

In Theorem 5, ωX//G restricts to the Sjamaar–Lerman–Bates ωt on each
reduced piece Ct/G.
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Let G be a Lie group, H a closed subgroup, X a Hamiltonian G-space,
Y a Hamiltonian H-space. Recall HomG and IndG

H, and define ResG
H.

Theorem 6
There is a (diffeological) diffeomorphism

t : HomG(X, IndG
H Y) → HomH(ResG

H X, Y).

Moreover, if one side carries a reduced 2-form, then so does the other,
and t maps one form to the other.

Sketch of proof. The sides are respectively (M//H)//G and N//H, where

M = X− × T∗G × Y, resp. N = X− × Y

have G × H-action (g , h)(x , p, y) = (g(x ), gph−1, h(y)), resp. diagonal
H-action, plus appropriate 2-forms ωM and ωN and moment maps

φM × ψM : M → g∗ × h∗, resp. ψN : N → h∗.

Define r : M → N by r(x , p, y) = (q−1(x ), y) for p ∈ T∗
qG,
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and consider the commutative diagram

M N

ψ
−1
M (0)

(φM × ψM)−1(0) ψ
−1
N (0)

M//H

Φ
−1
M//H(0)

(M//H)//G N//H

r
j1

π1

j

s

π

j3

π3

j2

π2

t

where the j ’s and π’s are inclusions and projections as in §1. One
checks that r sends (φM × ψM)−1(0) to ψ−1

N (0), so there is a map s as
indicated; and s sends G × H-orbits to H-orbits, so there is a map t .
Likewise one checks that the right inverse r ′ : N → M defined by
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r ′(x , y) = (x ,Φ(x ), y) (where we identify g∗ ∼= T∗
eG) descends to an

inverse t−1 of t . Now r and r ′ are quite explicitly smooth. Using the
universal properties of inductions (the j ’s) and subductions (the π’s),
one deduces without trouble that t and t−1 are smooth, as claimed.

Next, assume that both sides carry reduced 2-forms, ω(M//H)//G and
ωN//H. We must prove ω(M//H)//G = t∗ωN//H. By chasing the diagram,
one checks that this is equivalent to, not quite ωM = r∗

ωN but

j ∗j ∗1 ωM = j ∗j ∗1 r∗
ωN, (∗)

an equality of 2-forms on (φM × ψM)−1(0) (usually not a manifold).
Now (∗) means that its sides coincide after pull-back by any plot P
of that subset, i.e., by any smooth map P : U → M taking values in
(φM × ψM)−1(0). This is true, and can be checked in about 10 lines.

Finally, assume merely that one reduced form exists, ω(M//H)//G or
ωN//H. Then we can define the other by ω(M//H)//G = t∗ωN//H; and an
easy chase using again (∗) shows that it is indeed a reduced form.
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Final remark: Everything we have said can be adapted to work also
in the category {prequantum G-spaces}, which more closely mirrors
the motivating category {unitary representations}. For details, see
arXiv:2007.9434 and arXiv:2403.3927.
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