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Abstract: Ratiu-Z." established “Frobenius reciprocity” as a bijection ¢ between certain
symplectically reduced spaces (which need not be manifolds), and conjectured:

* tis a diffeomorphism, relative to the subquotient diffeologies of these spaces;

* t respects the reduced diffeological 2-forms they may (or might not) carry.
We prove this, and give new sufficient conditions for the reduced forms to exist.

“arXiv:2403.3927, joint with Gabriele Barbieri and Jordan Watts.

TarXiv:2007.9434, building on ideas of Guillemin-Sternberg (1983).
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Let (X, », ®) be a Hamiltonian G-space (G: Lie group, ®: equivariant
moment map). o0 oo

X/G:=®1(0)/G )

need not be a manifold; but it has a natural (“subquotient™) diffeology.
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Note: we will see that if wx ¢ exists, then it is unique (and closed).
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This is

HOI’IlG(Xl,Xz) = (Xl_ X Xz)//G Q
where (X;, w;, ®;) are Hamiltonian G-spaces and X~ := (X, —w, — ).

So the product here has diagonal G-action, 2-form wy; — w3, and
moment map ®(z1, zp) = P(zp) — D1 (z1).

* Note that © boils down to X5 /G when (X3, w1, ®1) = ({0}, 0, 0);
so asking when it carries a reduced 2-form includes the original
question about .

* More generally, Guillemin-Sternberg took for X; a coadjoint orbit
G(w), and noted that © then boils down to the space ®, 1(p) /Gy
of Marsden-Weinstein: this is their famous “shifting trick”.
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is called smooth if P € P implies Fo P € Q.
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E.g.: {locally constant maps} =: Pgiscrete C P C Peoarse := {all maps}.
3/17



So every manifold has a canonical diffeology. But also:

4/17



Y
Is
X

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and ¢ : X — Y an injection. =~ =
has a coarsest diffeology making ¢ smooth, the subset diffeology.

4/17



Y
Is
X

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that

4/17



So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P: U — X suchthat =~~~ 0 o

4/17



Prrobenus §2. Diffeology

Reciprocity

IS

Y
§2. Diffeology i OV ]\

ULX

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

4/17



Prrobenus §2. Diffeology

Reciprocity

IS

Y
§2. Diffeology i OV ]\

ULX

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property:

4/17



Prrobenus §2. Diffeology

Reciprocity

Y

§2. Diffeology ? OV 1

ULX

IS

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

4/17



Prrobenus §2. Diffeology

Reciprocity

Y

§2. Diffeology ? OV 1

ULX

K™

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

* Let X be a diffeological space and s : X — Y a surjection.

4/17



Prrobenus §2. Diffeology

Reciprocity

Y
§2. Diffeology i OV ]\

ULX

K™

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

* Let X be a diffeological space and s : X — Y a surjection. Then' Y
has a finest diffeology making s smooth, the quotient diffeology.

4/17



Prrobenus §2. Diffeology

Reciprocity

w

Y
§2. Diffeology i OV ]\

U_P,x U9,

IS

X
Y
So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

* Let X be a diffeological space and s : X — Y a surjection. Then' Y
has a finest diffeology making s smooth, the quotient diffeology.
Its n-plots are the maps Q : U — Y that have around each u € U
a ‘local lift’:

4/17



Prrobenus §2. Diffeology

Reciprocity

Y . X
§2. Diffeology ioy ]\i J{S
U_P,x ueVLm»ULY

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

* Let X be a diffeological space and s : X — Y a surjection. Then' Y
has a finest diffeology making s smooth, the quotient diffeology.
Its n-plots are the maps Q : U — Y that have around each u € U
a ‘local lift’: an n-plotR: V — Xwith u €¢ VC Uand Qy = soR.

4/17



Prrobenus §2. Diffeology

Reciprocity

Y . X
§2. Diffeology ioy ]\i J{S
U_P,x ueVLm»ULY

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

* Let X be a diffeological space and s : X — Y a surjection. Then' Y
has a finest diffeology making s smooth, the quotient diffeology.
Its n-plots are the maps Q : U — Y that have around each u € U
a ‘local lift’: an n-plotR: V — Xwith u €¢ VC Uand Qy = soR.

Universal property:

4/17



Prrobenus §2. Diffeology

Reciprocity

Y . X
§2. Diffeology ioy ]\i J{S
U_P,x ueVLm»ULY

So every manifold has a canonical diffeology. But also:

* LetY be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y.

Universal property: A map F to X is smooth iff 7 o F is smooth.

* Let X be a diffeological space and s : X — Y a surjection. Then' Y
has a finest diffeology making s smooth, the quotient diffeology.
Its n-plots are the maps Q : U — Y that have around each u € U
a ‘local lift’: an n-plotR: V — Xwith u €¢ VC Uand Qy = soR.

Universal property: A map F from Y is smooth iff F o s is smooth.

4/17



5/17



* The promised subquotient diffeology of X/G = ®~1(0) /G results:
take subset diffeology on ®~1(0), then quotient

5/17



* The promised subquotient diffeology of X/G = ®~1(0) /G results:
take subset diffeology on ®~!(0), then quotient
one can show, take quotient diffeology on X/G, then subset.

5/17



Prrobenus §2. Diffeology

Reciprocity

* The promised subquotient diffeology of X//G = ®~1(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
52 pifieology  OT€ can show, take quotient diffeology on X/G, then subset.

5/17



Prrobenus §2. Diffeology

Reciprocity

* The promised subquotient diffeology of X//G = ®~1(0) /G results:

take subset diffeology on ®~!(0), then quotient — or equivalently, as
52 pifieology  OT€ can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl } F:ioFos,

X/~ — F(X),

5/17



Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F:ioFos,

X/~ — F(X),

Where s = quotient map by the equivalence relation ‘F(z;) = F(z)’,
F = bijection of that quotient with F(X), ¢ = inclusion of that image
into Y.

5/17



Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F:ioFos,

X/~ — F(X),
Where s = quotient map by the equivalence relation ‘F(z;) = F(z)’,
F = bijection of that quotient with F(X), ¢ = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/ ~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.

5/17



Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F:ioFos,

X/~ — F(X),

where s = quotient map by the equivalence relation ‘F(z;) = F(z,)’,
F = bijection of that quotient with F(X), i = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.

Definitions

5/17



Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F:ioFos,

X/~ — F(X),

where s = quotient map by the equivalence relation ‘F(z;) = F(z,)’,
F = bijection of that quotient with F(X), i = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.

Definitions

* F is strict if both F and F~! are smooth (i.e., F is a diffeomorphism).

5/17



Diffeological

Frobenius §2. DiffeOIOgy
Reciprocity

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
52 pifieology  OT€ can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F:ioFos,

X/~ — F(X),

Where s = quotient map by the equivalence relation ‘F(z;) = F(z)’,
F = bijection of that quotient with F(X), ¢ = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/ ~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.
Definitions

* F is strict if both F and F~! are smooth (i.e., F is a diffeomorphism).
* An induction is a strict injection.

5/17



Diffeological

Frobenius §2. DiffeOIOgy
Reciprocity

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
52 pifieology  OT€ can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F:ioFos,

X/~ — F(X),

Where s = quotient map by the equivalence relation ‘F(z;) = F(z)’,
F = bijection of that quotient with F(X), ¢ = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/ ~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.
Definitions

* F is strict if both F and F~! are smooth (i.e., F is a diffeomorphism).
* An induction is a strict injection. Example: inclusion of a subset.

5/17



Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F=10Fo s,

X/~ — F(X),
Where s = quotient map by the equivalence relation ‘F(z;) = F(z)’,
F = bijection of that quotient with F(X), ¢ = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/ ~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.
Definitions

* F is strict if both F and F~! are smooth (i.e., F is a diffeomorphism).
* An induction is a strict injection. Example: inclusion of a subset.
* A subduction is a strict surjection.

5/17



Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

* The promised subquotient diffeology of X//G = ®~'(0) /G results:
take subset diffeology on ®~!(0), then quotient — or equivalently, as
one can show, take quotient diffeology on X/G, then subset.

* Any map F : X — Y between diffeological spaces can be factored

x —F Ly

sl Ti F=10Fo s,

X/~ — F(X),
Where s = quotient map by the equivalence relation ‘F(z;) = F(z)’,
F = bijection of that quotient with F(X), ¢ = inclusion of that image
into Y. With quotient (resp. subset) diffeology on X/ ~ (resp. F(X)),
the universal properties we saw imply: F smooth < F smooth.
Definitions

* F is strict if both F and F~! are smooth (i.e., F is a diffeomorphism).
* An induction is a strict injection. Example: inclusion of a subset.
* A subduction is a strict surjection. Example: projection to a quotient.

5/17



6/17



Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

Let X and Y be diffeological spaces.

6/17



Prrobenus §2. Diffeology

Reciprocity

Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

P Definitions (Diffeological Cartan-de Rham calculus)

6/17



Prrobenus §2. Diffeology

Reciprocity

Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

§2. Diffeology

Definitions (Diffeological Cartan-de Rham calculus)

Let X and Y be diffeological spaces.

6/17



Prrobenus §2. Diffeology

Reciprocity

Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

P Definitions (Diffeological Cartan-de Rham calculus)

Let X and Y be diffeological spaces.

* A k-form o onY is a functional which sends each plotP: V —Y
to an ordinary k-form on V, denoted P*o.

6/17



Prrobenus §2. Diffeology

Reciprocity

Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

P Definitions (Diffeological Cartan-de Rham calculus)

Let X and Y be diffeological spaces.

* A k-form o onY is a functional which sends each plotP: V —Y
to an ordinary k-form on V, denoted P*a. As compatibility, we
require: if ¢ € C*(U, V) (so P o ¢ is another plot), then

(Pod) o= {*P*a, }* : ordinary pull-back.

6/17



Prrobenus §2. Diffeology

Reciprocity

Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

P Definitions (Diffeological Cartan-de Rham calculus)

Let X and Y be diffeological spaces.

* A k-form o onY is a functional which sends each plotP: V —Y
to an ordinary k-form on V, denoted P*a. As compatibility, we
require: if ¢ € C*(U, V) (so P o ¢ is another plot), then

(Pod) o= {*P*a, }* : ordinary pull-back.

e Its pull-back F*o by a smooth map F : X — Y is the k-form on X
defined by: if P is a plot of X (so F o P is a plot of Y), then

P*Fa= (FoP)*q, F* : being defined.

6/17



Prrobenus §2. Diffeology

Reciprocity

Let us call ordinary the k-forms on Euclidean open sets and operations
on them (pull-back, exterior derivative).

§2. Diffeology

Definitions (Diffeological Cartan-de Rham calculus)
Let X and Y be diffeological spaces.

* A k-form o onY is a functional which sends each plotP: V —Y
to an ordinary k-form on V, denoted P*a. As compatibility, we
require: if ¢ € C*(U, V) (so P o ¢ is another plot), then

(Pod) o= {*P*a, }* : ordinary pull-back.

e Its pull-back F*o by a smooth map F : X — Y is the k-form on X
defined by: if P is a plot of X (so F o P is a plot of Y), then

P*Fa= (FoP)*q, F* : being defined.

* Its exterior derivative do is the (k + 1)-form defined for all plots
P of Y by P*da = dP*a, with ordinary d on the right-hand side.

6/17



7/17


http://www.numdam.org/item/AST_1985__S131__341_0

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, )

Let s : X — Y be a subduction, o a k-form on X.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

There is a basic criterion for when a k-form descends to a quotient:

Let s : X — Y be a subduction, o a k-form on X. In order that oo = s*[3
for some BonY,

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

There is a basic criterion for when a k-form descends to a quotient:

Let s : X = Y be a subduction, o a k-formonX. =~ o
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

There is a basic criterion for when a k-form descends to a quotient:

Let s : X — Y be a subduction, o a k-form on X. In order that o = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=50Q =5 Pfa = Q" a.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

There is a basic criterion for when a k-form descends to a quotient:

Let s : X — Y be a subduction, o a k-form on X. In order that o = s*3
for some B onY, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=500Q = P*o = Q"o &

Moreover, 3 is then unique.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

There is a basic criterion for when a k-form descends to a quotient:

Let s : X — Y be a subduction, o a k-form on X. In order that o = s*3
for some B onY, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=500Q = P o= Q%a. O

Moreover, {3 is then unique.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, o a k-form on X. In order that o. = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=s0Q = P = Q"o &

Moreover, (3 is then unique.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, o a k-form on X. In order that o. = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=s0Q = P = Q"o &

Moreover, (3 is then unique.

Comments on the proof.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, o a k-form on X. In order that o. = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=s0Q = P = Q"o &

Moreover, (3 is then unique.

Comments on the proof. Necessity is clear: if a = s*f,

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, o a k-form on X. In order that o. = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=s0Q = P = Q"o &

Moreover, (3 is then unique.
Comments on the proof. Necessity is clear: if « = s*3, we have

P*a = P*s*B = (s o P)*B,
Qu=Q"sB=(s0Q)

by definition of s*;

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, o a k-form on X. In order that o. = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=s0Q = P = Q"o &

Moreover, (3 is then unique.
Comments on the proof. Necessity is clear: if « = s*3, we have

P*a = P*s*B = (s o P)*B,
Qa=Q"s"B=(s0Q)"B

by definition of s*; <> follows.

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

Diffeological
Frobenius
Reciprocity

§2. Diffeology

§2. Diffeology

There is a basic criterion for when a k-form descends to a quotient:

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, o a k-form on X. In order that o. = s*3
for some 3 on Y, it is necessary and sufficient that all pairs of plots P, Q
of X satisfy

soP=s0Q = P = Q"o &

Moreover, (3 is then unique.
Comments on the proof. Necessity is clear: if « = s*3, we have

P*a = P*s*B = (s o P)*B,
Qa=Q"s"B=(s0Q)"B

by definition of s*; {) follows. Proving the rest takes about 2 pages. [

7/17


http://www.numdam.org/item/AST_1985__S131__341_0

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

All diffeological notions used in §1 have now been defined.

Existence of wx/g: Prior State of the Art

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

All diffeological notions used in §1 have now been defined.

e If the G-action on the level C = ®~1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997).

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.

Existence of wyx/g: Prior State of the Art

§3. Orbifolds

* If the G-action on the level C = ®~1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997).

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.

Existence of wyx/g: Prior State of the Art

§3. Orbifolds

* If the G-action on the level C = ®~1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon-Watts 2016).

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.

Existence of wyx/g: Prior State of the Art

§3. Orbifolds

* If the G-action on the level C = ®~1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon-Watts 2016).
So X//G carries a reduced 2-form in this case.

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.
Existence of wyx/g: Prior State of the Art
58, Qi e If the G-action on the level C = ®~1(0) is locally free and proper,

it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon-Watts 2016).
So X//G carries a reduced 2-form in this case.

* Note: locally free means that the infinitesimal stabilizer g, is zero
forall z € C.

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.
Existence of wyx/g: Prior State of the Art
58, Qi e If the G-action on the level C = ®~1(0) is locally free and proper,

it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon-Watts 2016).
So X//G carries a reduced 2-form in this case.

* Note: locally free means that the infinitesimal stabilizer g, is zero
for all z € C. As Im(D®(z)) = annihilator(g,), it follows that 0 is
a regular value, so C is a manifold.

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.

Existence of wyx/g: Prior State of the Art

§3. Orbifolds

* If the G-action on the level C = ®~1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon-Watts 2016).
So X//G carries a reduced 2-form in this case.

* Note: locally free means that the infinitesimal stabilizer g, is zero
for all z € C. As Im(D®(z)) = annihilator(g,), it follows that 0 is
a regular value, so C is a manifold.

* Of course, if the G-action on C is free and proper, then X/ G itself
is a manifold with a symplectic 2-form (Marsden-Weinstein 1974).

8/17


https://doi.org/10.1007/978-3-0348-0918-4
https://doi.org/10.3842/SIGMA.2016.026
https://doi.org/10.1016/0034-4877(74)90021-4

R 83. Orbifolds

Reciprocity
All diffeological notions used in §1 have now been defined.

Existence of wyx/g: Prior State of the Art

§3. Orbifolds

* If the G-action on the level C = ®~1(0) is locally free and proper,
it has long been known that X//G is an (effective) orbifold with
an ‘orbifold 2-form’ (proof in Cushman-Bates 1997). Now when
orbifolds are regarded as diffeological spaces, ‘orbifold forms’
define diffeological forms and conversely (Karshon-Watts 2016).
So X//G carries a reduced 2-form in this case.

* Note: locally free means that the infinitesimal stabilizer g, is zero
for all z € C. As Im(D®(z)) = annihilator(g,), it follows that 0 is
a regular value, so C is a manifold.
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Briefly, §§4—6 will improve on this by showing: it suffices to assume

locally free or proper, or strict.
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Theorem 2

Let G be a Lie group, H any dense subgroup. Then (T*G) /H = T*(G/H)
as diffeological, parasymplectic Hamiltonian G-spaces.

Example: G the 2-torus, H an irrational winding, G/H = T,,.
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3) in C the G-orbits are the leaves of a foliation F, 4) o := j*w is
basic for 7, i.e., G-invariant with g(z) C Ker(w|c). A theorem on
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Corollary
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where the j’s and «’s are inclusions and projections as in §1. One

checks that r sends (¢ X ¢M)-1(0) to gy 1(0), so there is a map s as
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Now (x) means that its sides coincide after pull-back by any plot P
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