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Abstract: Ignatowski (1910) showed that assumptions about light are not needed to
obtain Lorentzian kinematics as one of only few possibilities. We give a much simplified
proof of his result as formulated by Gorini (1971) for n+1-dimensional space-time.
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e Ignatowski (1910) was the first person to show that assumptions
about light are not needed to establish special relativity as one of
very few possibilities.

® His argument is a classic example of how group theory is
powerful to describe Nature.
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The Lorentz
group
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When ¢ = 0 this still makes sense and is called the Galilei group.
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The lorenz G first emerged in studies on the symmetry of Maxwell’s equations:
group

Voigt (1887) Larmor (1900) Lorentz (1904)

Lorentz: “For other physical quantities such as electric and magnetic
forces, a less direct method must be followed; one will seek, perhaps
a little by trial and error, the transformation formulas suitable for
ensuring the invariance of the electromagnetic equations.”
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group

Einstein (1905) Poincaré (1905) Minkowski (1908)

G = 03,1(R) — and a group.
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W. v. Ignatowsky (Berlin), Einige allge-
meine Bemerkungen zum Relativitits-
prinzip.

Als Einstein seinerzeit das Relativitits-
prinzip einfilhrte, nahm er parallel mit dem-
selben an, daB die Lichtgeschwindigkeit ¢ eine
umverselle Konstante sei, d.h. fiir alle Koordinaten-

lben Wert behal Auch Min-
kowsk1 ging bei seinen Untersuchungen von
der Invariante #2—¢2{2 aus, obwohl nach seinem

Vortrage ,,Raum und Zeit“l) zu urteilen, er

dem ¢ mehr die Bedeutung einer universellen

Raum—Zeit-Konstante beilegte, als diejenige der

Lichtgeschwindigkeit.

Nun habe ich mir die Frage gestellt, zu
welchen Beziehungen bezw. Transformations-
gleichungen man kommt, wenn man nur das
Relativititsprinzip an die Spitze der Untersuchung
stellt und ob iiberhaupt die Lorentzschen Trans-
formationsgleichungen die einzigen sind, die dem
Relativititsprinzip geniigen. '

Ignatowski’s argument (1910)
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Ignatowski’s argument (1910)

“MINKOWSKI regarded c as, more than the speed of light, a universal
space-time constant. Now I asked myself (...) whether the LORENTZ
transformations are the only ones satisfying the principle of relativity.”
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This is not just an academic question, for physicists measure whether
light actually does travel at the invariant speed c (or in other words,
lgnatowskds - ywhether the photon mass is exactly zero):

argument

REVIEWS OF MODERN PHYSICS, VOLUME 82, JANUARY-MARCH 2010

Photon and graviton mass limits

Alfred Scharff Goldhaber

C. N. Yang Institute for Theoretical Physics, SUNY Stony Brook,
New York 11794-3840, USA

and Theoretical Division (MS B285), Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, USA

Michael Martin Nieto

Theoretical Division (MS B285), Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, USA

(Published 23 March 2010)
Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity
have probed length scales increasing dramatically over time. Historically, these studies have passed

through three stages: (1) testing the power in the inverse-square laws of Newton and Coulomb, (2)
seeking a nonzero value for the rest mass of photon or graviton, and (3) considering more degrees of
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which is the Lorentz transformation — or Galileo’s, if 6 = 0.
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(e.g. Terence Tao in his blog), has the drawback of being essentially
1+ 1-dimensional.
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Early attempts at a 3+ 1-dimensional version were rather tedious,
mixing mathematics with interjected physical hypotheses. E.g. Hahn
(1913) has 7 axioms spread over 14 pages:

Grundlagen zu einer Theorie der Lorentztransformationen.
Von Emm. HanN in StraBburg i. Els.

Einleitung.

Die Welt des von Einstein’) und Minkowski?) eingefithrten
Raum-Zeitgebildes hat auf den ersten Blick etwas Befremdendes und,
wie Minkowski®) selbst bemerkt hat, MiBfilliges. Dieses Befremden
schwindet sehr, wenn man den Voraussetzungen nachgeht, auf denen das
Ganze beruht. Der entscheidende Schritt in dieser Richtung wurde von
Ignatowsky*) getan, der den Beweis zu filhren suchte, daB das An-
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In fact a clear-cut mathematical formulation had to wait until:

Gorini’s Commun. math. Phys. 21, 150—163 (1971)
theorem (© by Springer-Verlag 1971

Linear Kinematical Groups

VITTORIO GORINI*
Institut fiir Theoretische Physik (I) der Universitdt Marburg, Germany

Received November 12, 1970

Abstract. We prove a theorem which states that in an (n+ 1)-dimensional space-time
(n 2 3) the only linear kinematical groups which are compatible with the isotropy of space
are the Lorentz and Galilei groups. The special cases n=1 and n=2 are also briefly
discussed.
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Theorem (Gorini 1971)
Suppose n > 2 and let G be a subgroup of GL, 1 (R) such that

GL,(R) 0Y)_[(O0,(R) O
Gﬂ( 0 RX)*( 0 il)' ©®)

Write K for the right-hand side of (6). Then either G = K or there is a
number o € RU {00} such that

where p, = {(c?E g) :be R"} and pso = {(g 8) ice R"}.

In other words, G under the hypotheses must be isomorphic to one of
these 5 possibilities — all of them well-known and named:
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without light Gorini’s theorem (1971)

@ if 6 > 0, the Lorentz group O, 1(R) (Poincaré, 1906);
® if o = 0, the homogeneous Galilei group (Frank, 1908);
e ® if o < 0, the orthogonal group O, 1(R) (Jordan, 1870);
@ if 6 = oo, the homogeneous Carroll group (Lévy-Leblond, 1965);

@ if G = K, the homogeneous Aristotle group (Souriau, 1970).

Gorini’s result is remarkable, but didn’t catch on — perhaps because
his proof was neither concise nor enlightening.
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Gorini’s theorem (1971)

156 V. Gorini

By Lemma 1 (see (4.2), we have
d) +ve) cose

K 27), 425)
T+ o) >0, ¢€[0,27) (425)
and this gives the inequality
we)dv)| <1, vey (4.26)
Defining
0SB0 = [~ coso 4 a’(d + v sin?e]
and
a(d+ve)sine
@& (1= coseP + @2+ v sine] 7 *
with siny(0, )= siny(+0,0)=1 and cosy(0, )= cosy(+0,1)=0, we
caleulate
X, 02 (e, 1)) Lie, 1) €2 (= 7(e, 1)
[ dve-coss \
et eaadeny 0.0 gyaeden)
0 1 0..0
0 0 1.0 0
- L @27)
0 0 0.1 0
ls@.cdeve) oacdene 0.0 %

where
i, ¢,d,e,v,6)

_ sine{de?(1 — cose) [d2¢*(1 — cose) + a*(d +ve)*cose]

- ae(d+vc) [de*(1— cose)* (427a)
—@d+0) (@ (¢ + v sin'e—de*(1 —cose)(d- cose+00)]}
@+ oo sine]

_—u[d?e¥(1 - cose)? + a*(d+ v sin’,
o edvv)

oracdens= . @)

, ce[2d(1—cose) +vesin’s] |
0= s el —cosey + i+ vorsie ™ 27O

os(ac
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and

_ esiné(l — cose)[ed — a*(d +vc)]
"~ ald+ve)[de*(1—cose)’ +a*(d+vc) sin’

04(¢ A (27d)
One checks that 4(X (e, v)) =1, hence X(e,v) is an element of # and, by
Lemma 3, X (e, v) € A", Therefore
X v) =N ) @29
where, by (427b),
o[d?e2(1 — cose)? + a2(d+ ve)? sin’e] 2

wie.)= e(d+vecose) : “2)

Eqs. (4.14) and (4.15) imply

04(0,¢,d,,0,0)= 940, ¢,d, ¢,0,5)=0 @30)
One checks that for (4.30) to be satisfied it is necessary and sufficient that
(o) ()= a*(0) [do) + v e(e)] 31

Using (4.31) we get
d?e*(1 - cose)? +a2(d+vc)?sin’s = de*[2d(1 — cos) + vesin®s] . (432)
We have from (4.27) and (4.28),V ¢ € [0, 2n),
e(wie, o) = f (wle ) =1, (@333)
alwie, 1) = d(wie, ) = L:{“” (433b)
and, using (432),
c{d[2d(1 — cose) + ve sin?e]} 2

(e v) = e (4330
and 2,312
we.v)= ﬂ@i&—d ‘l"%) ;} sosn ] @339
From (4.33b,c.d) we get, ¥ c€ [0, 27,
w60 g >0 (434)
e )= (1+ 435)
and ”
(wle, )= (T(v we )1+ i; Wi o;) 36)
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This is a great result of Bourbaki, also found as Theorem 9.6.13 in

e J. Hilgert & K.-H. Neeb, Structure and Geometry of Lie Groups,
Springer, 2012.
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because et*Z* ' = ketZk~1, g is also an invariant subspace of gl,, ., (R)
under the adjoint representation of O, (R) C K:
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Step 1: Lie group structure of G

G admits a canonical (“initial”) Lie group structure having Lie algebra

g:={Zegl, ;(R):e? eGforallt eR}. ®

This is a great result of Bourbaki, also found as Theorem 9.6.13 in

e J. Hilgert & K.-H. Neeb, Structure and Geometry of Lie Groups,
Springer, 2012.

(It is valid for any subgroup G of any Lie group, not a priori closed.)
Because G contains K, (8) clearly contains the Lie algebra ¢ of K. And

because et*Z* ' = ketZk~1, g is also an invariant subspace of gl,, ., (R)
under the adjoint representation of O, (R) C K:

R 0\(A b RAR! Rb
Ad(0 1)(6 d):( Re d)’ R € O,(R). C))
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Al 0) | B
M() = {( 0 P) TAME R}
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Proof. 'We consider the isotypic decomposition gl,,; (R) = @?:0 M;
of gl,, ., (R) into multiples of irreducibles under O, (R):

e {( Y omace

M; = {(A 0) : A symmetric, Trace(A) = 0}

o

0 0
M, {(g 8) tA skew—symmetric} ¢
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Step 2: Determination of g

Either g = £ or there is 6 € RU {oo} such that g = ¢ ® p,,.

Proof. 'We consider the isotypic decomposition gl,, . ; (R) = @13'20 M;
Our proof of g, ;(R) into multiples of irreducibles under O, (R):

A0
Mof{(o H).MGR}

- ((
(6

: A symmetric, Trace(A) = 0}

tA skew-symmetric} =¢

o)
o)
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of g, ;(R) into multiples of irreducibles under O, (R):

e (3 e

M; = {(g ) A symmetric, Trace(A) = 0}
M, = {(g 8) A skew-symmetric} =t

0 b n
e {(0 V)],
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Step 2: Determination of g
Either g = £ or there is 6 € RU {oo} such that g = ¢ ® p,,.

Proof. 'We consider the isotypic decomposition gl,, . ; (R) = @13'20 M;
of g, ;(R) into multiples of irreducibles under O, (R):

O) }

:LULER

u M

0 .

0) : A symmetric, Trace(A) = 0}

8) tA skew-symmetric} =¢

b n
O).b,cER }

One knows (Bourbaki, Algébre, VIIL4.4d) that g = @>_, (g N M,).
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Either g = £ or there is 6 € RU {oo} such that g = ¢ ® p,,.

Proof. 'We consider the isotypic decomposition gl,, . ; (R) = @13'20 M;
of g, ;(R) into multiples of irreducibles under O, (R):

O) }

:LULER

u M

0 .

0) : A symmetric, Trace(A) = 0}

8) tA skew-symmetric} =¢

b n
O).b,cER }

One knows (Bourbaki, Algébre, VIIL4.4d) that g = @>_,(g N M;). Now
our hypothesis clearly implies g " My = g " M; = {0}
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Step 2: Determination of g
Either g = £ or there is 6 € RU {oo} such that g = ¢ ® p,,.

Proof. 'We consider the isotypic decomposition gl,, . ; (R) = @13'20 M;
of g, ;(R) into multiples of irreducibles under O, (R):

O) }

:LULER

u M

0 .

0) : A symmetric, Trace(A) = 0}

8) tA skew-symmetric} =¢

b n
O).b,cER }

One knows (Bourbaki, Algébre, VIIL4.4d) that g = @>_,(g N M;). Now
our hypothesis clearly implies g\ Mg = gNM; = {0} and gN M, = £.
There remains to see that g N M3 = {0} or p, for some o.
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As this is contained in [g, [g, £]] C g, the lower right entry must be O:
so the Cauchy-Schwarz bound is attained, i.e. b and c are collinear.
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considering linear combinations of Z; and Ad(k)(Z;) with k € K —
that g N M3 fills all M3, hence g = ¢ & M3, which by (10) isn’t a Lie
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In fact we claim that all Z = (% 8) € g N M3 have b and ¢ collinear.
To see this, put A = b — ¢b € 0, (R) and compute

(e oM o) (o 8)“:(3 2{b||2||c|(|)2—<bc>2})- (10)

As this is contained in [g, [g, €]] C g, the lower right entry must be 0:
so the Cauchy-Schwarz bound is attained, i.e. b and ¢ are collinear.

So each Z € g N M3 is in some p,. Moreover ¢ must be the same for
any two nonzero members Z;, Z,: else, one would readily find — by
considering linear combinations of Z; and Ad(k)(Z;) with k € K —
that g N M3 fills all M3, hence g = ¢ & M3, which by (10) isn’t a Lie
subalgebra. So Step 2 is complete. O
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Our proof

Proof. The first inclusion holds by hypothesis and definition of g,
the second because any subgroup G of any Lie group is contained in
the normalizer (11) of its Lie algebra (since e?29" ' = getZg—1). O

Step 4: Determination of N(g)

R*Kexp(ps) if 6 € R%,
N(E @ pc) = (12)

(Rgl 2 )Kexp(pc) if 6 € {0, oo} or p, = {0}.
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Step 3: Passage from g to G
With g = £ @ p, as in Step 2, we have Kexp(p,) C G C N(g), where

N(g) :={a € GL,.1(R) : aga™' C g}. (11)
Proof. The first inclusion holds by hypothesis and definition of g,

the second because any subgroup G of any Lie group is contained in
the normalizer (11) of its Lie algebra (since e?29" ' = getZg—1). O

Step 4: Determination of N(g)

R*Kexp(ps) if 6 € R%,
(019 )Kexp(p,) if o € {0, 00} or p, = {0}.

Proof omitted. (A simple computation using Schur’s lemma.) O
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Steps 3 and 4, plus our hypothesis implying that () ?) is not in G
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Steps 3 and 4, plus our hypothesis implying that (xol g) isnotin G
unless it is in K (so A, u = +1), complete the theorem’s proof. O

End!

More details at http://arxiv.org/abs/2007.09301.
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