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Synopsis

• Ignatowski (1910) was the first person to show that assumptions
about light are not needed to establish special relativity as one of
very few possibilities.

• His argument is a classic example of how group theory is
powerful to describe Nature.

• New proof illustrates what can be done with Lie theory and a
little representation theory.
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when
b/c = θe1

v/c = tanhθ

:
A ∈ O3(R)
b ∈ R3

ª

where σ =
1
c2

=
�

linear isometries of the quadratic form Q
� dr

dt

�

= dt2 − σ‖dr‖2	

∼= O3,1(R).

When σ = 0 this still makes sense and is called the Galilei group.
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The Lorentz group

G first emerged in studies on the symmetry of Maxwell’s equations:

Voigt (1887) Larmor (1900) Lorentz (1904)

Lorentz: “For other physical quantities such as electric and magnetic
forces, a less direct method must be followed; one will seek, perhaps
a little by trial and error, the transformation formulas suitable for
ensuring the invariance of the electromagnetic equations.”
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The Lorentz group

Einstein (1905) Poincaré (1905) Minkowski (1908)

G ∼= O3,1(R) — and a group.
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Ignatowski’s argument (1910)

“MINKOWSKI regarded c as, more than the speed of light, a universal
space-time constant. Now I asked myself (...) whether the LORENTZ

transformations are the only ones satisfying the principle of relativity.”
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Ignatowski’s argument (1910)

This is not just an academic question, for physicists measure whether
light actually does travel at the invariant speed c (or in other words,
whether the photon mass is exactly zero):
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Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)

7 / 18

https://babel.hathitrust.org/cgi/pt?u=1&id=coo.31924056112109&num=788


Relativity
without light

The Lorentz
group

Ignatowski’s
argument

Gorini’s
theorem

Our proof

Ignatowski’s argument (1910)

Ignatowski assumes that “relativity” is implemented by a group of
transformations

�

x ′

t ′
�

=

�

a b
c d

�

︸ ︷︷ ︸
g

�

x
t

�

. (1)

As (1) maps the line x = 0 to the line x ′ = b
d t ′, he calls v := b

d the
velocity of the transformation. He requires that the velocity −b

a of the
inverse transformation 1

ad−bc

�

d −b
−c a

�

be opposite to v , whence

a = d . (2)

Now in order that a product
�

a b
c a

� �

a ′ b′
c′ a ′

�

=

�

aa ′+bc′ ∗
∗ aa ′+b′c

�

still
satisfy (2) we must have bc′ = b′c, i.e. there is a constant σ such that

c
b
=

c′

b′
= σ. (3)
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So our transformations have the form g =
�

a b
σb a

�

with b = av . Next
Ignatowski argues that G should contain the reflection R =

�−1 0
0 1

�

and hence also the product RgRg =
� a2−σb2 0

0 a2−σb2

�

, but no scalar
matrices other than the identity (physics is not dilation-invariant).
Hence we should have 1 = a2 − σb2

=
↑

b=av

a2(1− σv2) and therefore

a = 1√
1−σv2

. (4)

Summing up, we have obtained

g =

 1√
1−σv2

v√
1−σv2

σv√
1−σv2

1√
1−σv2

!

(5)

which is the Lorentz transformation — or Galileo’s, if σ = 0.
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Ignatowski’s argument (1910)

This argument, since rediscovered by literally dozens of authors
(e.g. Terence Tao in his blog), has the drawback of being essentially
1+1-dimensional.

Early attempts at a 3+1-dimensional version were rather tedious,
mixing mathematics with interjected physical hypotheses. E.g. Hahn
(1913) has 7 axioms spread over 14 pages:
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Gorini’s theorem (1971)

In fact a clear-cut mathematical formulation had to wait until:
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Gorini’s theorem (1971)

Theorem (Gorini 1971)
Suppose n > 2 and let G be a subgroup of GLn+1(R) such that

G ∩
�

GLn(R) 0
0 R×

�

=

�

On(R) 0
0 ±1

�

. (6)

Write K for the right-hand side of (6). Then either G = K or there is a
number σ ∈ R ∪ {∞} such that

G = K exp(pσ), (7)

where pσ =

§�

0 b

σb 0

�

: b ∈ Rn
ª

and p∞ =

§�

0 0
c 0

�

: c ∈ Rn
ª

.

In other words, G under the hypotheses must be isomorphic to one of
these 5 possibilities — all of them well-known and named:
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Gorini’s theorem (1971)

1 if σ > 0, the Lorentz group On ,1(R) (Poincaré, 1906);

2 if σ = 0, the homogeneous Galilei group (Frank, 1908);

3 if σ < 0, the orthogonal group On+1(R) (Jordan, 1870);

4 if σ =∞, the homogeneous Carroll group (Lévy-Leblond, 1965);

5 if G = K, the homogeneous Aristotle group (Souriau, 1970).

Gorini’s result is remarkable, but didn’t catch on — perhaps because
his proof was neither concise nor enlightening.
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Step 1: Lie group structure of G

G admits a canonical (“initial”) Lie group structure having Lie algebra

g :=
�

Z ∈ gln+1(R) : etZ ∈ G for all t ∈ R
	

. (8)

This is a great result of Bourbaki, also found as Theorem 9.6.13 in

• J. Hilgert & K.-H. Neeb, Structure and Geometry of Lie Groups,
Springer, 2012.

(It is valid for any subgroup G of any Lie group, not a priori closed.)

Because G contains K, (8) clearly contains the Lie algebra k of K. And
because etkZk−1

= ketZk−1, g is also an invariant subspace of gln+1(R)
under the adjoint representation of On(R) ⊂ K:

Ad
�

R 0
0 1

��

A b
c d

�

=

�

RAR−1 Rb
Rc d

�

, R ∈ On(R). (9)
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Step 2: Determination of g

Either g = k or there is σ ∈ R ∪ {∞} such that g = k⊕ pσ.

Proof. We consider the isotypic decomposition gln+1(R) =
⊕3

i=0 Mi
of gln+1(R) into multiples of irreducibles under On(R):

M0 =

§�

λ1 0
0 μ

�

: λ, μ ∈ R
ª

M1 =

§�

A 0
0 0

�

: A symmetric, Trace(A) = 0
ª

M2 =

§�

A 0
0 0

�

: A skew-symmetric
ª

= k

M3 =

§�

0 b
c 0

�

: b, c ∈ Rn
ª

.

One knows (Bourbaki, Algèbre, VIII.4.4d) that g =
⊕3

i=0(g∩Mi). Now
our hypothesis clearly implies g ∩M0 = g ∩M1 = {0} and g ∩M2 = k.
There remains to see that g ∩M3 = {0} or pσ for some σ.

15 / 18
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In fact we claim that all Z =
�

0 b
c 0

�

∈ g ∩M3 have b and c collinear.
To see this, put A = bc− cb ∈ on(R) and compute

�

�

0 b
c 0

�

,
�

�

0 b
c 0

�

,
�

A 0
0 0

�

��

=

�

∗ 0
0 2

�

‖b‖2‖c‖2 − (bc)2
	

�

. (10)

As this is contained in [g, [g, k]] ⊂ g, the lower right entry must be 0:
so the Cauchy-Schwarz bound is attained, i.e. b and c are collinear.

So each Z ∈ g ∩M3 is in some pσ. Moreover σ must be the same for
any two nonzero members Z1, Z2: else, one would readily find — by
considering linear combinations of Z1 and Ad(k)(Z2) with k ∈ K —
that g ∩M3 fills all M3, hence g = k⊕M3, which by (10) isn’t a Lie
subalgebra. So Step 2 is complete.
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considering linear combinations of Z1 and Ad(k)(Z2) with k ∈ K —
that g ∩M3 fills all M3, hence g = k⊕M3, which by (10) isn’t a Lie
subalgebra. So Step 2 is complete.
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Step 3: Passage from g to G

With g = k⊕ pσ as in Step 2, we have K exp(pσ) ⊂ G ⊂ N(g), where

N(g) :=
�

a ∈ GLn+1(R) : aga−1 ⊂ g
	

. (11)

Proof. The first inclusion holds by hypothesis and definition of g,
the second because any subgroup G of any Lie group is contained in
the normalizer (11) of its Lie algebra (since etgZg−1

= getZg−1).

Step 4: Determination of N(g)

N(k⊕ pσ) =







R×K exp(pσ) if σ ∈ R×,
�

R×1 0
0 R×

�

K exp(pσ) if σ ∈ {0,∞} or pσ = {0}.
(12)

Proof omitted. (A simple computation using Schur’s lemma.)
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Steps 3 and 4, plus our hypothesis implying that
�

λ1 0
0 μ

�

is not in G
unless it is in K (so λ, μ = ±1), complete the theorem’s proof.

End!

More details at http://arxiv.org/abs/2007.09301.
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