F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Contact Imprimitivity

François Ziegler (Georgia Southern)

Joint Cornell-Penn State Symplectic Seminar, 4/22/2017

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Representation theory

(background)

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Systems of imprimitivity

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

Definition

System of imprimitivity for V is a G-invariant, commutative \mathbb{C}^{*} -subalgebra $A \subset \operatorname{End}(V)$.

Its base is its Gelfand spectrum $B = \{nonzero ^{-1}honomorphism b : A \rightarrow G\}$, with topology of pointwise convergence.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

Definition

A system of imprimitivity for V is a G-invariant, commutative C^* -subalgebra A \subset End(V).

Systems of imprimitivity

Its *base* is its Gelfand spectrum $B = \{nonzero *-homomorphisms b : A \rightarrow C\}$, with topology of pointwise convergence.

The base, B, is a locally compact G-space: $g_{\mathbb{B}}(b)(a) = b(g_V^{-1}ag_V)$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

Systems of imprimitivity

- A *system of imprimitivity* for V is a G-invariant, commutative C*-subalgebra $A \subset End(V)$.
 - Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
 - The base, B, is a locally compact **G-space**: $g_{\rm B}(b)(a) = b(g_{\rm V}^{-1}ag_{\rm V})$
 - The system, A, is called *transitive* if G acts transitively on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

Systems of imprimitivity

- A *system of imprimitivity* for V is a G-invariant, commutative C*-subalgebra $A \subset End(V)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_V^{-1}ag_V)$.
- The system, A, is called *transitive* if G acts transitively on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Systems of imprimitivity

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

- A *system of imprimitivity* for V is a G-invariant, commutative C*-subalgebra $A \subset End(V)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_V^{-1}ag_V)$.
- The system, A, is called *transitive* if G acts transitively on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Systems of imprimitivity

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

- A *system of imprimitivity* for V is a G-invariant, commutative C*-subalgebra $A \subset End(V)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_V^{-1}ag_V)$.
- The system, A, is called *transitive* if G acts transitively on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Systems of imprimitivity

Let G be a locally compact group (e.g. Lie), V a unitary G-module.

Definition

- A *system of imprimitivity* for V is a G-invariant, commutative C*-subalgebra $A \subset End(V)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_V^{-1}ag_V)$.
- The system, A, is called *transitive* if G acts transitively on B.

Remark: The *Gelfand transform* $a \mapsto \hat{a}$, defined by $\hat{a}(b) = b(a)$, is an isomorphism $A \to C_0(B)$. Its inverse E is a *-representation of $C_0(B)$ in V such that

$$\mathrm{E}(f\circ g_{\mathrm{B}}^{-1})=g_{\mathrm{V}}\mathrm{E}(f)g_{\mathrm{V}}^{-1},$$

i.e. a "system of imprimitivity" in the original Mackey-Blattner sense.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

The imprimitivity theorem

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- V admits a transitive system of imprimitivity with base B = G/H($H = G_b$ say);
- $V = Ind_{H}^{G} W$ for some unitary H-module W (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

The imprimitivity theorem

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- V admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $V = Ind_{H}^{G}W$ for some unitary H-module W (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

The imprimitivity theorem

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- V admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $V = Ind_{H}^{G}W$ for some unitary H-module W (suitably unique).

Explanation (case G/H admits a G-invariant measure):

F. Ziegler Representation

theory

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- V admits a transitive system of imprimitivity with base B = G/H ($H = G_b$ say);
- $V = Ind_{H}^{G}W$ for some unitary H-module W (suitably unique).

Explanation (case G/H admits a G-invariant measure):

- ↓: Harder!

The imprimitivity theorem

3/10

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

The imprimitivity theorem

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- V admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $V = Ind_{H}^{G}W$ for some unitary H-module W (suitably unique).

Explanation (case G/H admits a G-invariant measure):

- \uparrow : Ind^G_H W := {L² sections *s* of associated bundle G ×_H W → G/H}. This indeed admits a system of imprimitivity, viz.: E_{ind}(*f*)*s* = *fs*.
- ↓: Harder!

Key application: The Mackey-Clifford *normal subgroup analysis*: When G has a closed normal subgroup N, classify unirreps of G in terms of unirreps of N and projective unirreps of subgroups of G/N.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Symplectic imprimitivity

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , *equiv*. moment Φ).

Definition

A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra $f \in \mathbb{C}^{\infty}(\Omega)$, such that the hamiltonian vector field drag f is complete for all $f \in \mathfrak{f}$.

(x), f(x), f(x), Each $f \in f$ descends to a function f on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , *equiv*. moment Φ).

Definition

A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra $\mathfrak{f} \subset \mathbb{C}^{\infty}(X)$, such that the hamiltonian vector field drag *f* is complete for all $f \in \mathfrak{f}$.

Its *base* is the image B of the "moment map" $\pi : X \to f^*$, $(\pi(x), f) = f(x)$. Each $f \in f$ descends to a function f on B.

The base, B, is a G-subset of f^* : $(g_B(b), f) = (b, f \circ g_X)$.

The system, f₁ is called transitive if 3.9. G acts transitively on B 3.9 is 5.3 - 5.8 is C^{ord} for the homogeneous space structure on B

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , *equiv*. moment Φ).

- A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.
- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C[∞] for the homogeneous space structure on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , *equiv*. moment Φ).

- A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.
 - Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
 - The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
 - The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C[∞] for the homogeneous space structure on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , *equiv*. moment Φ).

- A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.
 - Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C[∞] for the homogeneous space structure on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , *equiv*. moment Φ).

- A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.
- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_B(b), f \rangle = \langle b, f \circ g_X \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C[∞] for the homogeneous space structure on B.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space (2-form σ , equiv. moment Φ).

Definition

- A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.
- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function f on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_B(b), f \rangle = \langle b, f \circ g_X \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi: X \to B$ is C^{∞} for the homogeneous space structure on B.

Explanation: $\mathcal{F} := (\mathfrak{f} \text{ as an additive group) acts on X by <math>f_X = e^{\operatorname{drag} f}$ and π is *formally* a moment map for this action: $\operatorname{drag}\langle \pi(\cdot), f \rangle = \operatorname{drag} f$. Stabilizers G_b are *closed* so B's homogeneous structure is well-defined.

Symplectic imprimitivity theorem

Contact Imprimitivity

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H($H = G_b$ say);
- $X = Ind_H^G Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

- $\Uparrow\colon Ind_{H}^{G}\,Y$ is as defined by Kazhdan-Kostant-Sternberg [1978]:
 - **D** Endow M := T*G × Y with the 2-form $\omega = d\theta + \tau$, $\theta = "\langle p, dq \rangle$ ". **D** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
 - This has moment map $\psi(p,y)=\Psi(y)-q^{-1}p_{|\mathfrak{h}|}$, $(p\in\mathbb{T}_q^*\mathrm{G}).$
 - Define $\ln d_{H}^{G} X := \psi^{-1}(0)/B$ (Marsden-Weinstein subquotient).
 - The G-action g(p, y) = (gp, y) with moment map $\varphi(p, y) = pq^{-1}$ passes to the quotient; whence the claimed G-space structure.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

- $\Uparrow\colon \operatorname{Ind}_H^G Y$ is as defined by Kazhdan-Kostant-Sternberg [1978]:
- **1** Endow M := T*G × Y with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- 3 This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in \mathrm{T}_q^*\mathrm{G}).$
- Define $\operatorname{Ind}_{H}^{G} Y := \psi^{-1}(0)/H$ (Marsden-Weinstein subquotient).
- S The G-action g(p, y) = (gp, y) with moment map φ(p, y) = pq⁻¹ passes to the quotient; whence the claimed G-space structure.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

- $\Uparrow\colon \operatorname{Ind}_H^G Y$ is as defined by Kazhdan-Kostant-Sternberg [1978]:
- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)^n$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- 3 This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in T_q^*G)$.
- ④ Define $Ind_{H}^{G}Y := \psi^{-1}(0)/H$ (Marsden-Weinstein subquotient).
- **(b)** The G-action g(p, y) = (gp, y) with moment map $\varphi(p, y) = pq^{-1}$ passes to the quotient; whence the claimed G-space structure.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

- $\Uparrow\colon \operatorname{Ind}_H^G Y$ is as defined by Kazhdan-Kostant-Sternberg [1978]:
- **1** Endow M := T^{*}G × Y with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- **3** This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in T_q^*G)$.
- 4 Define $\operatorname{Ind}_{H}^{G} Y := \psi^{-1}(0)/H$ (Marsden-Weinstein subquotient).
- S The G-action g(p, y) = (gp, y) with moment map $\varphi(p, y) = pq^{-1}$ passes to the quotient; whence the claimed G-space structure.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

- $\Uparrow\colon \operatorname{Ind}_H^G Y$ is as defined by Kazhdan-Kostant-Sternberg [1978]:
- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)^n$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- **3** This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in T_q^*G)$.
- $\label{eq:constraint} \mbox{ Optime Ind}_{H}^{G} Y \! := \psi^{-1}(0) / H \quad \mbox{ (Marsden-Weinstein subquotient). }$

5 The G-action g(p, y) = (gp, y) with moment map φ(p, y) = pq⁻¹ passes to the quotient; whence the claimed G-space structure.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

- $\Uparrow\colon \operatorname{Ind}_H^G Y$ is as defined by Kazhdan-Kostant-Sternberg [1978]:
- **1** Endow M := T^{*}G × Y with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)$.
- 2 Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- **3** This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in T_q^*G)$.
- $\label{eq:constraint} \mbox{ Optime Ind}_{H}^{G} Y \! := \psi^{-1}(0) / H \quad \mbox{ (Marsden-Weinstein subquotient). }$
- **6** The G-action g(p, y) = (gp, y) with moment map $\varphi(p, y) = pq^{-1}$ passes to the quotient; whence the claimed G-space structure.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↑: In short, $Ind_{H}^{G} Y = (T^{*}G \times Y)//H$. Now a G-equivariant projection

$$\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$$

arises by noting that the map T*G × Y → G/H sending T^{*}_qG × Y to *q*H is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

$$\mathfrak{f}_{ind} := \pi^*_{ind}(\mathbf{C}^\infty(\mathbf{G}/\mathbf{H}))$$

is a transitive system of imprimitivity on $\text{Ind}_{\text{H}}^{\text{G}}$ Y with base G/H.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

 \Uparrow : In short, $Ind_{H}^{G} Y = (T^{*}G \times Y)/\!/H.$ Now a G-equivariant projection

$$\pi_{ind}: Ind_{H}^{G}\, Y \to G/H$$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

$$\mathfrak{f}_{ind} := \pi^*_{ind}(C^\infty(G/H))$$

is a transitive system of imprimitivity on Ind_{H}^{G} Y with base G/H.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

 $\Uparrow\colon$ In short, $Ind_{H}^{G}\,Y=(T^{*}G\times Y)/\!/H.$ Now a G-equivariant projection

$$\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

$$\mathfrak{f}_{ind} := \pi^*_{ind}(C^\infty(G/H))$$

is a transitive system of imprimitivity on $Ind_{H}^{G}Y$ with base G/H.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

 $\Uparrow\colon$ In short, $Ind_{H}^{G}\,Y=(T^{*}G\times Y)/\!/H.$ Now a G-equivariant projection

$$\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

$$\mathfrak{f}_{ind}:=\pi_{ind}^*(C^\infty(G/H))$$

is a transitive system of imprimitivity on $\mathrm{Ind}_{\mathrm{H}}^{\mathrm{G}}\,\mathrm{Y}$ with base $\mathrm{G}/\mathrm{H}.$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

- **↓**: Explicitly Y is the "reduced space" $\pi^{-1}(b)/\mathcal{F}$. Key steps to make sense of this (\mathcal{F} need not be Lie, nor its action free or proper...):
- **①** Show directly that (as in Lie case) $\pi^{-1}(b)$ is a submanifold with

$$\mathbf{T}_{x}(\pi^{-1}(b)) = \mathbf{\mathfrak{f}}(x)^{\sigma}, \qquad (*)$$

hence coisotropic with characteristic leaves the \mathcal{F} -orbits.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↓: Explicitly Y is the "reduced space" $\pi^{-1}(b)/\mathcal{F}$. Key steps to make sense of this (\mathcal{F} need not be Lie, nor its action free or proper...):

① Show directly that (as in Lie case) $\pi^{-1}(b)$ is a submanifold with

$$\mathbf{T}_{x}(\pi^{-1}(b)) = \mathfrak{f}(x)^{\sigma}, \qquad (*)$$

hence coisotropic with characteristic leaves the \mathcal{F} -orbits.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

: Explicitly Y is the "reduced space" π⁻¹(*b*)/𝔅. Key steps to make sense of this (𝔅 need not be Lie, nor its action free or proper...):

① Show directly that (as in Lie case) $\pi^{-1}(b)$ is a submanifold with

$$\mathbf{T}_{x}(\pi^{-1}(b)) = \mathbf{\mathfrak{f}}(x)^{\sigma}, \qquad (*)$$

hence coisotropic with characteristic leaves the $\ensuremath{\mathcal{F}}\xspace$ orbits.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

- ↓: Explicitly Y is the "reduced space" $\pi^{-1}(b)/\mathcal{F}$. Key steps to make sense of this (\mathcal{F} need not be Lie, nor its action free or proper...):
- **1** Show directly that (as in Lie case) $\pi^{-1}(b)$ is a submanifold with

$$T_x(\pi^{-1}(b)) = \mathfrak{f}(x)^{\sigma}, \qquad (*)$$

hence coisotropic with characteristic leaves the $\mathcal F\text{-orbits}.$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↓: Explicitly Y is the "reduced space" $\pi^{-1}(b)/\mathfrak{F}$. Key steps to make sense of this (\mathfrak{F} need not be Lie, nor its action free or proper...):

2 Observe that the action $\mathcal{F} \longrightarrow \text{Diff}(\pi^{-1}(b))$ factors into

$$\begin{array}{ccc} \mathcal{F} & \xrightarrow{\quad \text{onto by } (^{*}) \quad} & T_{b}^{*}B & \\ f & \longmapsto & -D\dot{f}(b) \end{array} \quad \text{and} \qquad \begin{array}{ccc} T_{b}^{*}B & \longrightarrow & \text{Diff}(\pi^{-1}(b)) \\ a & \longmapsto & e^{\hat{a}} \end{array}$$

with \hat{a} defined by $\sigma(\hat{a}(x), \cdot) = a \circ D\pi(x) [T_b^*B \to T_x^*X \to T_xX]$. So its orbits are those of an action of the additive *Lie group* T_b^*B .

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

- ↓: Explicitly Y is the "reduced space" $\pi^{-1}(b)/\mathfrak{F}$. Key steps to make sense of this (\mathfrak{F} need not be Lie, nor its action free or proper...):
- Observe that the moment map Φ relates â ∈ Vect(π⁻¹(b)) with the *constant* field ă ∈ ann(h) ⊂ g* defined by (ă, Z) = ⟨a, Z(b)⟩:

 $\langle \mathrm{D}\Phi(x)(\hat{a}(x)),\mathrm{Z}
angle=\sigma(\hat{a}(x),\mathrm{Z}(x))=\langle a,\mathrm{D}\pi(x)(\mathrm{Z}(x))
angle=\langle\check{a},\mathrm{Z}
angle.$

So Φ intertwines the T_b^*B action with a mere translation action: $\Phi(e^{\hat{a}}(x)) = \Phi(x) + \check{a}$. Latter is free and proper \Rightarrow so is former.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

\U035: Once $Y = \pi^{-1}(b)/\mathcal{F}$ is made sense of, it is routine to check that $X = \text{Ind}_{H}^{G} Y$.

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z. [arXiv:1410.7950])

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

 $\Downarrow\colon$ Once $Y=\pi^{-1}(b)/\mathfrak{F}$ is made sense of, it is routine to check that $X=Ind_{H}^{G}Y.$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivit

Sample applications

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer $n G of x_{|a} \in a^*$ and $Y = H(x_{|b})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such hat $X = Ind_{p}^{G} \{x_{|p}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

 $\mathbf{X} = \mathrm{Ind}_{\mathrm{H}_{1}}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{H}_{i}}^{\mathrm{H}_{i-1}} \mathbf{Y}_{i} = \mathrm{Ind}_{\mathrm{H}_{i}}^{\mathrm{G}} \mathbf{Y}_{i}$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer in G of $x_{|a|} \in a^*$ and $Y = H(x_{|b|})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Corollary 2 (Symplectic Kirillov-Bernat)

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such hat $X = Ind_p^G \{x_{|p}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

 $\mathbf{X} = \mathbf{Ind}_{\mathbf{H}_1}^{\mathbf{G}} \cdots \mathbf{Ind}_{\mathbf{H}_i}^{\mathbf{H}_{i-1}} \mathbf{Y}_i = \mathbf{Ind}_{\mathbf{H}_i}^{\mathbf{G}} \mathbf{Y}_i$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer in G of $x_{|a|} \in a^*$ and $Y = H(x_{|b|})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Corollary 2 (Symplectic Kirillov-Bernat)

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such that $X = Ind_P^G \{x_{|P}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

 $\mathbf{X} = \mathbf{Ind}_{\mathbf{H}_1}^{\mathbf{G}} \cdots \mathbf{Ind}_{\mathbf{H}_i}^{\mathbf{H}_{i-1}} \mathbf{Y}_i = \mathbf{Ind}_{\mathbf{H}_i}^{\mathbf{G}} \mathbf{Y}_i$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer in G of $x_{|a|} \in a^*$ and $Y = H(x_{|b|})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Corollary 2 (Symplectic Kirillov-Bernat)

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such that $X = Ind_p^G\{x_{|p}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

 $\mathbf{X} = \mathrm{Ind}_{\mathrm{H}_1}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{H}_i}^{\mathrm{H}_{i-1}} \mathbf{Y}_i = \mathrm{Ind}_{\mathrm{H}_i}^{\mathrm{G}} \mathbf{Y}_i$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer in G of $x_{|a|} \in a^*$ and $Y = H(x_{|b|})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Corollary 2 (Symplectic Kirillov-Bernat)

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such that $X = Ind_p^G\{x_{|p}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

 $X = Ind_{H_1}^G \cdots Ind_{H_i}^{H_{i-1}} Y_i = Ind_{H_i}^G Y_i$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer in G of $x_{|a|} \in a^*$ and $Y = H(x_{|b|})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Corollary 2 (Symplectic Kirillov-Bernat)

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such that $X = Ind_p^G\{x_{|p}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

 $\mathbf{X} = \mathrm{Ind}_{\mathrm{H}_1}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{H}_i}^{\mathrm{H}_{i-1}} \mathbf{Y}_i = \mathrm{Ind}_{\mathrm{H}_i}^{\mathrm{G}} \mathbf{Y}_i$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Corollary 1 (Normal abelian subgroup analysis)

Suppose X = G(x) is a coadjoint orbit of G which has a closed connected normal **abelian** subgroup A. Then $X = Ind_H^G Y$ where H is the stabilizer in G of $x_{|a|} \in a^*$ and $Y = H(x_{|b|})$.

Proof: $\{\langle \cdot, Z \rangle : Z \in \mathfrak{a}\}$ is a transitive system of imprimitivity for X.

Corollary 2 (Symplectic Kirillov-Bernat)

Suppose X = G(x) is a coadjoint orbit of an **exponential** Lie group G. Then X is monomial, i.e. G admits a closed connected subgroup P such that $X = Ind_p^G\{x_{|p}\}$.

Note: This gives a new construction of Pukánszky polarizations (P).

Proof: Apply Corollary 1 inductively to normal abelian subgroups furnished by a lemma of Takenouchi [1957] to obtain

$$X = Ind_{H_1}^G \cdots Ind_{H_i}^{H_{i-1}} Y_i = Ind_{H_i}^G Y_i$$

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity theorem

rying to mimick Mackey analysis for *nonabelian* normal subgroups oon forces one to remember that unitary representations really prrespond to *prequantum* G-spaces (\tilde{X}, α).

These are principal circle bundles P : $\tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum G × H-space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space (Ind^G_H \tilde{Y}, α_{ind}) over Ind^G_H Y admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups soon forces one to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X}, α).

These are principal circle bundles P : $\tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum G × H-space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space (Ind^G_H \tilde{Y}, α_{ind}) over Ind^G_HY admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups soon forces one to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X}, α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space ($\operatorname{Ind}_H^G \tilde{Y}, \alpha_{\operatorname{ind}}$) over $\operatorname{Ind}_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra $\tilde{f}_{\operatorname{ind}}$ of complete α -preserving vector fields. In fact $\tilde{f}_{\operatorname{ind}} \simeq f_{\operatorname{ind}}$.

Theorem

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups soon forces one to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y},β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y},\theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G}\tilde{Y}$ for some prequantum H-space (\tilde{Y},β) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups soon forces one to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X}, α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups soon forces one to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X}, α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

F. Ziegler

Representation theory

Symplectic imprimitivity

Sample applications

Contact imprimitivity

End!