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1. Quantum
states

State of a group G: function m : G — C such that @ m(e) =1,
@ the sesquilinear form

(c, ) := Z Cydnm(g~th) > 0.
g,heG

Gives rise to unitary G-module GNS,, > ¢ such that m(g) = (¢, g¢).
(Put (-, ), on C[G], divide out null vectors and complete; ¢ = [3¢].)
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for all choices of n € N, ¢; € C and complete, commuting Z; € aut(L)
with hamiltonians H;: H;(z) = @ (Z;(&)).

None. (Unless X is zero-dimensional.)

Remark. X is a coadjoint orbit of Aut(L.). We might more modestly
ask for states and representations of smaller groups (of which X is a
coadjoint orbit).
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for all choices of n € N, ¢; € C and commuting Z; € g.

Too many. (Unless X is zero-dimensional.)

* If X = {z} is an integral point-orbit, then the unique quantum

state for X is the character m (exp(Z)) = (=%,
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Let § := (compact) character group of the discrete additive group g.
We have a dense inclusion g* < §, z — e'®, and projections

Theorem

A state m of G is quantum for X < for each abelian a C g,
the state m o exp,, of a has its spectral measure concentrated on bXi,,
the projection (in a) of the closure bX of X (in §).

This spectral measure is the probability measure y on a such that
(moexp,)(Z) = ju ¥(Z)du(y). (Bochner.)
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States

Because this (‘Bohr’) closure operation b is drastic:

1. Quantum
states

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

(a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr
dense in g, i.e. bX = §.

(b) If G is connected nilpotent, every coadjoint orbit is Bohr dense in its
affine hull.

Corollary

(a) If G is noncompact simple, every unitary representation of G is
quantum for every nongzero coadjoint orbit (!)

(b) If G is connected nilpotent and X spans g* (reduce to this case by
dividing out ann(X)), a unitary representation of G is quantum for
X < the center acts in it by the character exp(Z) — /%2,
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@ Hope that the much-needed selection will arise by restricting
attention to states that extend to the whole Aut(L).

@ Suppress the Bohr closure implicit in the definition. For results
along this line see arxiv.org/abs/1011.5056.

© Take this closure seriously, because it allows interesting states:

Definition
Let H C G be a closed subgroup and Y C X|;, a coadjoint orbit of H.

A quantum state m for X is localized at Y C h* if the restriction myy is
a quantum state for Y.

We also say that the state is localized on n~'(Y), where = is the
projection X — h*.
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@ Suppress the Bohr closure implicit in the definition. For results
along this line see arxiv.org/abs/1011.5056.

© Take this closure seriously, because it allows interesting states:

Definition
Let H C G be a closed subgroup and Y C X|;, a coadjoint orbit of H.

A quantum state m for X is localized at Y C h* if the restriction myy is
a quantum state for Y.

One should expect uniqueness of such a state when n=1(Y) is
lagrangian (half-dimensional): Weinstein (1982) called attaching
state vectors to lagrangian submanifolds the FUNDAMENTAL
QUANTIZATION PROBLEM.


http://arxiv.org/abs/1011.5056
http://dx.doi.org/10.1007/BFb0092426
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Every quantum representation of a compact Lie group G is continuous.
The irreducible with highest weight \ is quantum for the coadjoint orbit
with dominant element p. < A < .

So even for compact G, Souriau’s definition does not recover the usual
‘orbit method’ (which posits A = ). In contrast we have, with T C G a
maximal torus:

Theorem

* If uis dominant integral, then there is a unique quantum state m
for X = G(y) localized at {y ¢} C t*; GNS,, is the irreducible
representation with highest weight .

* If u is dominant and not integral, then there is no such state.
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Euclid’s group G = {g = (4 i) : Aise(i){gB)

G acts naturally and symplectically on
the manifold X ~ TS? of oriented lines
(a.k.a. light rays) in R3. 2-formy, s:

® = k d{(u, dr) + s Areag.
The moment map

Bu, ) = (r X k]::L—F su)

makes X into a coadjoint orbit of G.
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