1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

Quantum States Localized on Lagrangian Submanifolds*

François Ziegler (Georgia Southern)

November 8, 2014

^{*}http://arxiv.org/abs/1310.7882

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

 Euclid's group

L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

efinition (Souriau 1990

uantum state –

Quantum states

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, $\omega).$

efinition (Souriau 1990)

quantum state

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that $\bigcirc m(e) = 1$, \bigcirc the sequilinear form

 $(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h)$

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (I m(e) = 1, (I m(e) = 1,

 $(c,d)_m := \sum_{g,h\in G} \overline{c}_g d_h m(g^{-1}h)$

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : \mathbf{G} \to \mathbf{C}$ such that $(\mathbf{I}, m(e) = 1)$,

2 the sesquilinear form

 $(c,d)_m := \sum_{g,h\in\mathsf{G}} \overline{c}_g d_h m(g^{-1}h)$

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (1) m(e) = 1, (2) the sequilinear form

$$(c,d)_m := \sum_{g,h\in \mathsf{G}} \overline{c}_g d_h m(g^{-1}h)$$

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathsf{G}} \overline{c}_g d_h m(g^{-1}h)$$

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h)$$

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathsf{G}} \overline{c}_g d_h m(g^{-1}h)$$

on $C[G] = \{$ functions $G \rightarrow C$ with finite support $\}$, is positive.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h)$$

on $C[G] = \{$ functions $G \rightarrow C$ with finite support $\}$, is positive.

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathsf{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

Gives rise to unitary G-module $GNS_m \ni \varphi$ such that $m(g) = (\varphi, g)$

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

```
A quantum state is a state m of Aut(L)
```

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

Gives rise to unitary G-module $GNS_m \ni \varphi$ such that $m(g) = (\varphi, g\varphi)$.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m:=\sum_{g,h\in \mathrm{G}}\overline{c}_g d_h m(g^{-1}h)\gg 0.$$

Gives rise to unitary G-module $\text{GNS}_m \ni \varphi$ such that $m(g) = (\varphi, g\varphi)$. (Put $(\cdot, \cdot)_m$ on **C**[G], divide out null vectors and complete; $\varphi = [\delta^e]$.)

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L)

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state is a state m of Aut(L) such that

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}\right|$$

for all choices of $n \in \mathbb{N}$, $c_j \in \mathbb{C}$ and complete, commuting $Z_j \in \operatorname{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \text{aut}(\mathbf{L})$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L) such that

$$\left|\sum_{j=1}^{n} c_{j} m(\exp(\mathbf{Z}_{j}))\right| \leq \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^{n} c_{j} \mathrm{e}^{\mathrm{i}\mathrm{H}_{j}(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \text{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L) such that

$$\left|\sum_{j=1}^{n} c_{j} m(\exp(\mathbf{Z}_{j}))\right| \leq \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^{n} c_{j} \mathrm{e}^{\mathrm{i}\mathrm{H}_{j}(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in aut(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

State of a group G: function $m : G \to C$ such that (0, m(e) = 1), (2) the sesquilinear form

$$(c,d)_m := \sum_{g,h\in \mathrm{G}} \overline{c}_g d_h m(g^{-1}h) \gg 0.$$

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A *quantum state* is a state m of Aut(L) such that

$$\left|\sum_{j=1}^{n} c_{j} m(\exp(\mathbf{Z}_{j}))\right| \leq \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^{n} c_{j} \mathrm{e}^{\mathrm{i} \mathrm{H}_{j}(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \operatorname{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathrm{Z}_j))
ight|\leqslant \sup_{x\in \mathrm{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \text{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathrm{Z}_j))\right| \leqslant \sup_{x\in\mathrm{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in aut(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

• A *quantum representation* (of Aut(L), for X) is a unitary Aut(L)-module \mathcal{H} s.t. $m(g) = (\varphi, g\varphi)$ is quantum \forall unit $\varphi \in \mathcal{H}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x\in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in aut(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

- A *quantum representation* (of Aut(L), for X) is a unitary Aut(L)-module \mathcal{H} s.t. $m(g) = (\varphi, g\varphi)$ is quantum \forall unit $\varphi \in \mathcal{H}$.
- **Theorem** (Souriau). m quantum \Rightarrow GNS_m quantum.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\operatorname{Z}_j))\right| \leqslant \sup_{x\in\operatorname{X}} \left|\sum_{j=1}^n c_j \operatorname{e}^{\operatorname{i}\operatorname{H}_j(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \operatorname{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

Examples

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\operatorname{Z}_j))
ight|\leqslant \sup_{x\in\operatorname{X}} \left|\sum_{j=1}^n c_j \operatorname{e}^{\operatorname{iH}_j(x)}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \operatorname{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

Examples

None.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathrm{Z}_j))\right| \leqslant \sup_{x\in\mathrm{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in \operatorname{aut}(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

Examples

None. (Unless X is zero-dimensional.)

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathrm{Z}_j))
ight|\leqslant \sup_{x\in\mathrm{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\mathrm{H}_j(x)}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in aut(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

Examples

None. (Unless X is zero-dimensional.)

Remark. X is a coadjoint orbit of Aut(L). We might more modestly ask for states and representations of smaller groups (of which X is a coadjoint orbit).

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

(L, ϖ): Kostant-Souriau line bundle over symplectic manifold (X, ω).

Definition (Souriau 1990)

A quantum state (of Aut(L), for X) is a state m of Aut(L) such that

$$\left|\sum_{j=1}^n c_j m(\exp(\operatorname{Z}_j))
ight|\leqslant \sup_{x\in\operatorname{X}} \left|\sum_{j=1}^n c_j \operatorname{e}^{\operatorname{i}\operatorname{H}_j(x)}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and complete, commuting $Z_j \in aut(L)$ with hamiltonians H_j : $H_j(x) = \varpi(Z_j(\xi))$.

Examples

None. (Unless X is zero-dimensional.)

Remark. X is a coadjoint orbit of Aut(L). We might more modestly ask for states and representations of smaller groups (of which X is a coadjoint orbit).

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

antum state (of G, for X) is a state m of G such that

Quantum states

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A *quantum state* (of G, for X) is a state *m* of G such that

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^{n} c_{j} m(\exp(\mathbf{Z}_{j}))\right| \leq \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^{n} c_{j} \mathrm{e}^{\mathrm{i}\langle x, \mathbf{Z}_{j} \rangle}\right|$$

for all choices of $n \in \mathbf{N}, \ c_j \in \mathbf{C}$ and *commuting* $\mathrm{Z}_j \in \mathfrak{g}.$

1. Quantum

states

2. Localized states

3. Nilpoten groups

4. Compagroups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\langle x, \mathbf{Z}_j
angle}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}(x, \mathbf{Z}_j)}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

Examples

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compa groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\langle x, \mathbf{Z}_j
angle}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

Examples

Too many.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\langle x, \mathbf{Z}_j
angle}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

Examples

Too many. (Unless X is zero-dimensional.)

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compagroups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j \mathrm{e}^{\mathrm{i}\langle x, \mathbf{Z}_j
angle}\right|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

Examples

Too many. (Unless X is zero-dimensional.)

If X = {x} is an integral point-orbit, then the unique quantum state for X is the character m(exp(Z)) = e^{i(x,Z)}.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compagroups

5. Euclid's group

X: coadjoint orbit of a connected Lie group G.

Definition (Souriau 1990)

A quantum state (of G, for X) is a state m of G such that

$$\left|\sum_{j=1}^n c_j m(\exp(\mathbf{Z}_j))\right| \leqslant \sup_{x \in \mathbf{X}} \left|\sum_{j=1}^n c_j e^{\mathbf{i} \langle x, \mathbf{Z}_j
angle}
ight|$$

for all choices of $n \in \mathbf{N}$, $c_j \in \mathbf{C}$ and commuting $Z_j \in \mathfrak{g}$.

Examples

Too many. (Unless X is zero-dimensional.)

• If $X = \{x\}$ is an integral point-orbit, then the unique quantum state for X is the character $m(\exp(Z)) = e^{i\langle x, Z \rangle}$.

1. Quantum states

The statistical interpretation

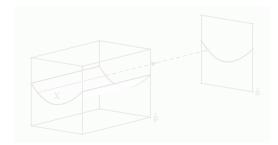
Let $\hat{\mathfrak{g}} := (\text{compact})$ character group of the *discrete* additive group \mathfrak{g} .

groups

5. Euclid's group

The statistical interpretation

Let $\hat{\mathfrak{g}}:=$ (compact) character group of the *discrete* additive group $\mathfrak{g}.$



1. Quantum states

2. Localized states

 Nilpoten groups

4. Compa groups

5. Euclid's group

The statistical interpretation

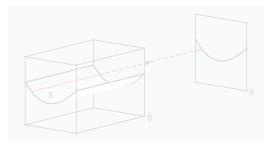
1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i(x,\cdot)}$, and projections



The statistical interpretation

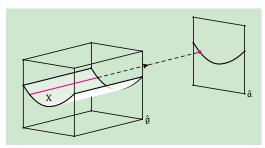
1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections

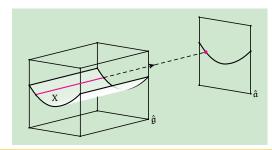


1. Quantum

- 2. Localized states
- 3. Nilpoten groups
- 4. Compac groups
- 5. Euclid's group

Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections

The statistical interpretation



Theorem

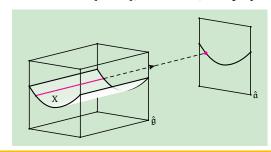
A state m of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$,

the state $m \circ \exp_{|_{\mathfrak{a}}}$ of \mathfrak{a} has its spectral measure

1. Quantum

- 2. Localized states
- 3. Nilpoten groups
- 4. Compac groups
- 5. Euclid's group

Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections



Theorem

A state *m* of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$, the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{o}f\mathfrak{a}$ has its spectral measure

This *spectral measure* is the probability measure μ on \hat{a} such that $(m \circ \exp_{|a})(Z) = \int_{\hat{a}} \chi(Z) d\mu(\chi)$. (Bochner.)

The statistical interpretation

Let â

1. Quantum states

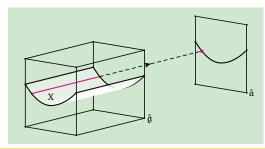
2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections



Theorem

A state *m* of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$, the state $m \circ \exp_{|\mathfrak{a}}$ of \mathfrak{a} has its spectral measure

This *spectral measure* is the probability measure μ on \hat{a} such that $(m \circ \exp_{|a})(Z) = \int_{\hat{a}} \chi(Z) d\mu(\chi)$. (Bochner.)

The statistical interpretation

Lot â · _ /

The statistical interpretation

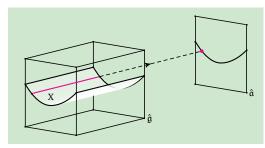
 Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections



Theorem

A state *m* of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$, the state $m \circ \exp_{|\mathfrak{a}|} \mathfrak{g}$ of \mathfrak{a} has its spectral measure

1. Quantu states

2. Localized states

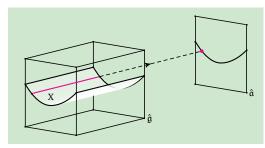
 Nilpoten groups

4. Compac groups

5. Euclid's group

The statistical interpretation

Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections



Theorem

A state *m* of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$, the state $m \circ \exp_{|\mathfrak{a}}$ of \mathfrak{a} has its spectral measure concentrated on $bX_{|\mathfrak{a}}$, the projection (in $\hat{\mathfrak{a}}$) of the closure bX of X (in $\hat{\mathfrak{g}}$).

1. Quantui states

2. Localized states

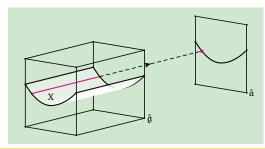
 Nilpoten groups

4. Compac groups

5. Euclid's group

The statistical interpretation

Let $\hat{\mathfrak{g}} :=$ (compact) character group of the *discrete* additive group \mathfrak{g} . We have a dense inclusion $\mathfrak{g}^* \hookrightarrow \hat{\mathfrak{g}}, x \mapsto e^{i\langle x, \cdot \rangle}$, and projections



Theorem

A state *m* of G is quantum for $X \Leftrightarrow$ for each abelian $\mathfrak{a} \subset \mathfrak{g}$, the state $m \circ \exp_{|\mathfrak{a}|}$ of \mathfrak{a} has its spectral measure concentrated on $bX_{|\mathfrak{a}|}$, the projection (in $\hat{\mathfrak{a}}$) of the closure bX of X (in $\hat{\mathfrak{g}}$).

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compa groups

 Euclid's group

Why "too many" quantum representations?

1. Quantum states

 Localized states

3. Nilpoten groups

4. Compa groups

 Euclid's group

Why "too many" quantum representations?

Because this ('Bohr') closure operation b is *drastic*:

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Why "too many" quantum representations?

Because this ('Bohr') closure operation b is drastic:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

(a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr dense in \hat{g} , i.e. $bX = \hat{g}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Why "too many" quantum representations?

Because this ('Bohr') closure operation b is drastic:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

(a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr dense in \hat{g} , i.e. $bX = \hat{g}$.

Corollary

(a) If G is noncompact simple, **every** unitary representation of G is quantum for **every** nonzero coadjoint orbit (!)

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Why "too many" quantum representations?

Because this ('Bohr') closure operation b is drastic:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

- (a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr dense in \hat{g} , i.e. $bX = \hat{g}$.
- (b) If G is connected nilpotent, every coadjoint orbit is Bohr dense in its affine hull.

Corollary

(a) If G is noncompact simple, **every** unitary representation of G is quantum for **every** nonzero coadjoint orbit (!)

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Why "too many" quantum representations?

Because this ('Bohr') closure operation b is drastic:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

- (a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr dense in \hat{g} , i.e. $bX = \hat{g}$.
- (b) If G is connected nilpotent, every coadjoint orbit is Bohr dense in its affine hull.

Corollary

- (a) If G is noncompact simple, **every** unitary representation of G is quantum for **every** nonzero coadjoint orbit (!)
- (b) If G is connected nilpotent and X spans \mathfrak{g}^* (reduce to this case by dividing out ann(X)), a unitary representation of G is quantum for X \Leftrightarrow the center acts in it by the character $\exp(Z) \mapsto e^{i\langle X, Z \rangle}$.

1. Quantum states

2. Localized states

- 3. Nilpotent groups
- 4. Compac groups
- 5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- attention to states that *extend* to the whole Aut(L).
- Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- Take this closure seriously, because it allows interesting states:

1. Quantum states

2. Localized states

- 3. Nilpotent groups
- 4. Compact
- 5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- Take this closure seriously, because it allows interesting states:

1. Quantum states

2. Localized states

- 3. Nilpoten groups
- 4. Compac groups
- 5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **③** Take this closure seriously, because it allows *interesting states*:

1. Quantum states

2. Localized states

- 3. Nilpoten groups
- 4. Compac groups
- 5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 *Suppress* the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is *localized at* $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is *localized at* $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \rightarrow \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is *localized at* $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

We also say that the state is *localized on* $\pi^{-1}(Y)$, where π is the projection $X \to \mathfrak{h}^*$. One knows this set is generically a *coisotropic submanifold* — hence at least half-dimensional, and suitable for localizing a system on. We'll mostly consider $Y = \{pt\}$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

One should expect uniqueness of such a state when $\pi^{-1}(Y)$ is *lagrangian* (half-dimensional):

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

 Euclid's group

So Souriau's definition is not restrictive enough. 3 ways to proceed:

- Hope that the much-needed selection will arise by restricting attention to states that *extend* to the whole Aut(L).
- 2 Suppress the Bohr closure implicit in the definition. For results along this line see arxiv.org/abs/1011.5056.
- **3** Take this closure seriously, because it allows *interesting states*:

Definition

Let $H \subset G$ be a closed subgroup and $Y \subset X_{|\mathfrak{h}}$ a coadjoint orbit of H. A quantum state m for X is **localized at** $Y \subset \mathfrak{h}^*$ if the restriction $m_{|H}$ is a quantum state for Y.

One should expect uniqueness of such a state when $\pi^{-1}(Y)$ is *lagrangian* (half-dimensional): Weinstein (1982) called attaching state vectors to lagrangian submanifolds the FUNDAMENTAL QUANTIZATION PROBLEM.

Localized states

Localized
Quantum
States

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group

Localized Quantum States

 Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

X : coadjoint orbit of G,

x : chosen point in X.

A connected subgroup $\mathrm{H}\subset\mathrm{G}$ is *subordinate to* x if, equivalently,

Localized Quantum States

 Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group, X : coadjoint orbit of G,

: chosen point in X.

A connected subgroup $\mathrm{H}\subset\mathrm{G}$ is *subordinate to* x if, equivalently,

{a_h} is a point-orbit of H in h

- 1. Quantum states
- 2. Localized states
- 3. Nilpotent groups
- 4. Compac groups
- 5. Euclid's group

- G : connected, simply connected nilpotent Lie group,
- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathrm{H}\subset\mathrm{G}$ is *subordinate to* x if, equivalently,

 $\{x_{|h}\}$ is a point-orbit of H in h^*

- (x, [b, b]) = 0
 - e^{iz o log}itt is a character of H

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,

 $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $H \subset G$ is *subordinate to* x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$

• $e^{ix \circ \log}|_{H}$ is a character of H.

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is subordinate to x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$n(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & ext{if } g \in \mathrm{H}, \ 0 & ext{otherwise} \end{array}
ight.$$

Moreover ${
m GNS}_m={
m ind}_{
m H}^{
m G}\,{
m e}^{{
m i}x\,\circ\,\log}_{|{
m H}|}$ (discrete induction).

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is *subordinate to x* if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{lb}\} \subset b^*$, namely

$$n(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x\,\circ\,\log}(g) & ext{if}\ g\in\mathrm{H},\ 0 & ext{otherwise} \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}_{|H|}$ (discrete induction).

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is *subordinate to x* if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} {
m e}^{{
m i}x\circ \log}(g) & {
m i}f \; g\in {
m H}, \ 0 & otherwise \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}_{|H|}$ (*discrete induction*).

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is subordinate to x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x\,\circ\,\log}(g) & ext{if}\ g\in\mathrm{H},\ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}|_H$ (discrete induction).

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is subordinate to x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & ext{if } g \in \mathrm{H}, \ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}|_H$ (discrete induction).

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is subordinate to x if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x\,\circ\,\log}(g) & ext{if } g\in\mathrm{H},\ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}|_H$ (discrete induction).

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is *subordinate to x* if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x\,\circ\,\log}(g) & ext{if } g\in\mathrm{H},\ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}_{|H}$ (discrete induction).

 $\mathfrak{a} \subset \mathfrak{h} \Rightarrow x_{|\mathfrak{a}}$ certain;

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group

G : connected, simply connected nilpotent Lie group,

- X : coadjoint orbit of G,
- x : chosen point in X.

A connected subgroup $\mathbf{H} \subset \mathbf{G}$ is *subordinate to x* if, equivalently,

- $\{x_{|\mathfrak{h}}\}$ is a point-orbit of H in \mathfrak{h}^*
- $\langle x, [\mathfrak{h}, \mathfrak{h}] \rangle = 0$
- $e^{ix \circ \log_{|H|}}$ is a character of H.

Theorem

Let $H \subset G$ be maximal subordinate to $x \in X$. Then there is a unique quantum state for X localized at $\{x_{|\mathfrak{h}}\} \subset \mathfrak{h}^*$, namely

$$m(g) = \left\{egin{array}{cc} \mathrm{e}^{\mathrm{i}x \, \circ \, \log}(g) & ext{if } g \in \mathrm{H}, \ 0 & ext{otherwise}. \end{array}
ight.$$

Moreover $GNS_m = ind_H^G e^{ix \circ \log}|_H$ (discrete induction).

 $\mathfrak{a} \subset \mathfrak{h} \; \Rightarrow \; x_{|\mathfrak{a}} \; ext{certain}; \qquad \mathfrak{a} \pitchfork \mathfrak{h} \; \Rightarrow \; x_{|\mathfrak{a}} \; ext{equidistributed in } \hat{\mathfrak{a}}.$

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

Remark Kirillov (1962) used $I(x, H) := Ind_{H}^{G} e^{ix \circ \log_{|H|}}$ (usual induction).

This is

Nilpotent groups

irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

Localized Quantum States

Remark

1. Quantum states

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

Kirillov (1962) used I(x, H) := Ind_H^G e^{ix o log}_{|H} (usual induction). This is

) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

Remark

Kirillov (1962) used I(x, H) := Ind_H^G e^{ix o log}_{|H} (usual induction). This is

(a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);

b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

1. Quantum states

Localized

Quantum States

2. Localized states

3. Nilpotent groups

4. Compac groups

5. Euclid's group

Remark

Kirillov (1962) used I(x, H) := Ind_H^G e^{ix o log}_{|H} (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

1. Quantum states

Localized

Quantum States

- 2. Localized states
- 3. Nilpotent groups
- 4. Compa groups
- 5. Euclid's group

Remark

Localized

Quantum States

3. Nilpotent

groups

Kirillov (1962) used $I(x, H) := Ind_H^G e^{ix \circ \log_{|H|}}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Theorem

Let $\mathrm{H} \subset \mathrm{G}$ be subordinate to x. Then $\mathrm{i}(x,\mathrm{H}) := \mathrm{ind}_{\mathrm{H}}^{\mathrm{G}} \mathrm{e}^{\mathrm{i}x \circ \log}_{|\mathrm{H}}$ is

Remark

Localized

Quantum States

3. Nilpotent

groups

Kirillov (1962) used $I(x, H) := Ind_H^G e^{ix \circ \log_{|H|}}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Theorem

Let $H \subset G$ be subordinate to x. Then $i(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H|}$ is

Remark

Localized

Quantum States

3. Nilpotent

groups

Kirillov (1962) used $I(x, H) := Ind_H^G e^{ix \circ \log_{|H|}}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Theorem

Let $H \subset G$ be subordinate to x. Then $i(x, H) := \operatorname{ind}_{H}^{G} e^{ix \circ \log}_{|H|}$ is

Remark

Localized

Quantum States

3. Nilpotent

groups

Kirillov (1962) used $I(x, H) := Ind_H^G e^{ix \circ \log_{|H|}}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Theorem

Let $H \subset G$ be subordinate to x. Then $i(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H}$ is

(a) *irreducible* \Leftrightarrow H *is* **maximal** *subordinate* to x;

(b) **inequivalent** to i(x, H') if $H \neq H'$ are two polarizations at x.

Remark

Localized

Quantum States

3. Nilpotent

groups

Kirillov (1962) used $I(x, H) := Ind_H^G e^{ix \circ \log}_{|H|}$ (usual induction). This is

- (a) irreducible \Leftrightarrow H is a *polarization at* x (: subordinate subgroup such that the bound dim(G/H) $\ge \frac{1}{2}$ dim(X) is attained);
- (b) *equivalent* to I(x, H') if $H \neq H'$ are two polarizations at x.

In contrast:

Theorem

Let $H \subset G$ be subordinate to x. Then $i(x, H) := ind_{H}^{G} e^{ix \circ \log}_{|H}$ is

- (a) *irreducible* \Leftrightarrow H *is* **maximal** *subordinate* to x;
- (b) *inequivalent* to i(x, H') if $H \neq H'$ are two polarizations at x.

Example: Extended Galilei group $G = \begin{cases} g = (f_{1}) \\ g = (f_{2}) \end{cases}$

1. Quantum states

Localized

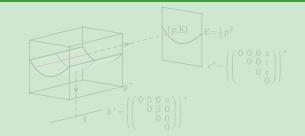
Quantum States

2. Localized states

3. Nilpotent groups

4. Compa groups

5. Euclid's group



B and C are maximal subordinate but only C is a polarization. So i(x, C), I(x, C), i(x, B) are irreducible but I(x, B) is not.

All act by $(g\psi)({r \atop t}) = e^{-ia}e^{-i(b(r-c)-\frac{1}{2}b^2(t-e))}\psi({r-c-b(t-e) \atop t-e})$, but

Localized Quantum States Example: Extended Galilei group G = $\begin{cases} 1 & b & \frac{1}{2}b^2 & a \\ 1 & b & c \\ 1 & 1 & e \\ 1 & 0 & c \\ 1 & 0 & e \\ 1 & 0 & c \\ 1 & 0 & e \\ 1 & 0 & 0 \\$

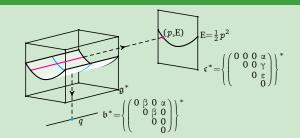
1. Quantum states

2. Localized states

3. Nilpotent groups

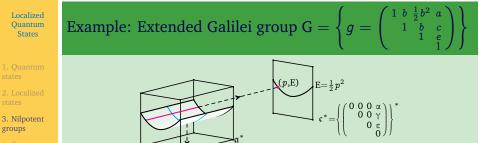
4. Compa groups

5. Euclid's group



B and C are maximal subordinate but only C is a polarization. So i(x, C), I(x, C), i(x, B) are irreducible but I(x, B) is not.

All act by $(g\psi)({r \atop t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^2(t-e)\}}\psi({r-c-b(t-e) \atop t-e})$, but



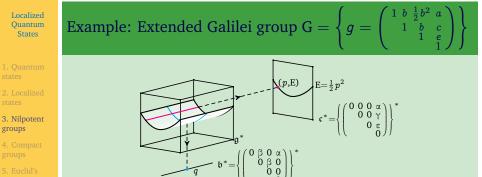
4. Compa groups

 Euclid's group

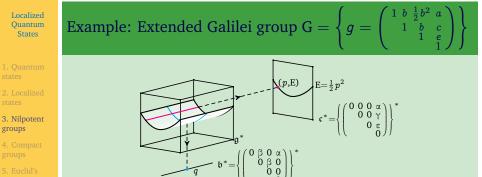
> B and C are maximal subordinate but only C is a polarization. So i(x, C), I(x, C), i(x, B) are irreducible but I(x, B) is not.

 $\mathfrak{b}^* = \left\{ \left(\begin{array}{ccc} 0 & \beta & 0 & \alpha \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{array} \right) \right\}^{2}$

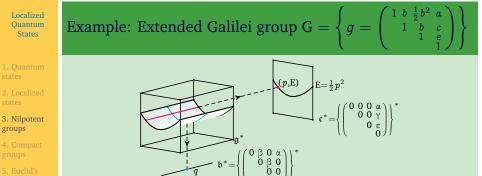
All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)}_{t-e})$, but



All act by $(g\psi)({r \atop t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^2(t-e)\}}\psi({r-c-b(t-e) \atop t-e})$, but



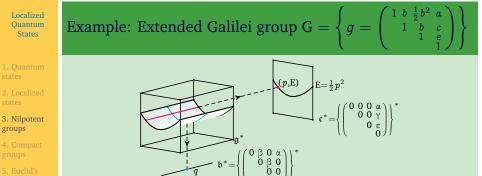
All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)}_{t-e})$, but



All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)}_{t-e})$, but

1 I(x, B) in L² functions of $\begin{pmatrix} r \\ t \end{pmatrix}$

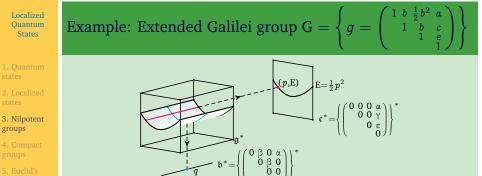
2 I(x, C) in L² solutions of Schrödinger's equation $i\partial_t \psi = \frac{1}{2}\partial_r^2 \psi$ **3** i(x, C) in almost periodic solutions, norm² $\lim_{R\to\infty} \frac{1}{2R} \int_{-R}^{R} |\psi|^2 dr$ **4** i(x, B) in ℓ^2 functions



All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)})$, but

1 I(x, B) in L² functions of $\binom{r}{t}$

2 I(x, C) in L² solutions of Schrödinger's equation $i\partial_t \psi = \frac{1}{2} \partial_r^2 \psi$

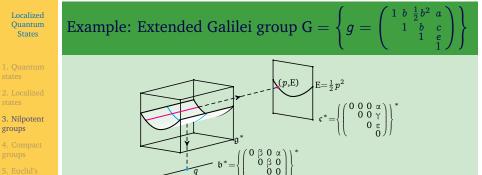


All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)}_{t-e})$, but

1 I(x, B) in L² functions of $\begin{pmatrix} r \\ t \end{pmatrix}$

2 I(*x*, C) in L² solutions of Schrödinger's equation $i\partial_t \psi = \frac{1}{2} \partial_r^2 \psi$

3 i(*x*, C) in almost periodic solutions, norm² $\lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} |\psi|^2 dr$



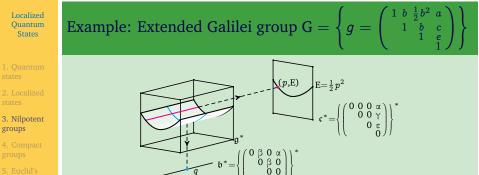
All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)})$, but

1 I(x, B) in L² functions of $\binom{r}{t}$

2 I(x, C) in L² solutions of Schrödinger's equation $i\partial_t \psi = \frac{1}{2} \partial_r^2 \psi$

3 i(*x*, C) in almost periodic solutions, norm² $\lim_{R\to\infty} \frac{1}{2R} \int_{-R}^{R} |\psi|^2 dr$

4 i(x, B) in ℓ^2 functions



All act by $(g\psi)({}^{r}_{t}) = e^{-ia}e^{-i\{b(r-c)-\frac{1}{2}b^{2}(t-e)\}}\psi({}^{r-c-b(t-e)})$, but

1 I(x, B) in L² functions of $\binom{r}{t}$

2 I(x, C) in L² solutions of Schrödinger's equation $i\partial_t \psi = \frac{1}{2} \partial_r^2 \psi$

3 i(x, C) in almost periodic solutions, norm² $\lim_{R\to\infty} \frac{1}{2R} \int_{-R}^{R} |\psi|^2 dr$

4 i(x, B) in ℓ^2 functions — no Schrödinger equation needed!

Localized
Quantum
States

Compact groups

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compact groups

 Euclid's group

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leqslant \mu$.

9/12

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $u \Leftrightarrow \lambda \leq u$.

2. Localize states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leqslant \mu$.

2. Localize states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leqslant \mu$.

2. Localized states

 Nilpoter groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leqslant \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leqslant \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leq \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

Theorem

- If μ is dominant integral, then there is a unique quantum state m for X = G(μ) localized at {μ_{|t}} ⊂ t*; GNS_m is the irreducible representation with highest weight μ.
- If μ is dominant and not integral, then there is no such state.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leq \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

Theorem

 If µ is dominant integral, then there is a unique quantum state m for X = G(µ) localized at {µ_{|t}} ⊂ t*; GNS_m is the irreducible representation with highest weight µ.

• If μ is dominant and not integral, then there is no such state.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leq \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

Theorem

• If μ is dominant integral, then there is a unique quantum state m for $X = G(\mu)$ localized at $\{\mu_{\mid t}\} \subset \mathfrak{t}^*$; GNS_m is the irreducible representation with highest weight μ .

• If μ is dominant and not integral, then there is no such state.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compact groups

5. Euclid's group

Theorem

Every quantum representation of a compact Lie group G is continuous. The irreducible with highest weight λ is quantum for the coadjoint orbit with dominant element $\mu \Leftrightarrow \lambda \leq \mu$.

So even for compact G, Souriau's definition does not recover the usual 'orbit method' (which posits $\lambda = \mu$). In contrast we have, with $T \subset G$ a maximal torus:

Theorem

- If μ is dominant integral, then there is a unique quantum state m for $X = G(\mu)$ localized at $\{\mu_{|t}\} \subset t^*$; GNS_m is the irreducible representation with highest weight μ .
- If μ is dominant and not integral, then there is no such state.

1. Quantum states

2. Localize states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Euclid's group G = $\left\{g = \left(\begin{smallmatrix} A & c \\ 0 & 1 \end{smallmatrix}\right) : \begin{smallmatrix} A \in \mathbf{SO}(3) \\ c \in \mathbf{R}^3 \end{smallmatrix}\right\}$

Example: TS

G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2 formula

 $\omega = k \; d \langle oldsymbol{u}, \, oldsymbol{dr}
angle + s \, \mathrm{Area}_{\mathrm{S}^2}.$

The moment map

 $\Phi(u,r) = \binom{r \times ku + su}{ku}$

makes X into a coadjoint orbit of G

1. Quantum states

2. Localize states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Euclid's group G = $\left\{g = \left(\begin{smallmatrix} A & c \\ 0 & 1 \end{smallmatrix}\right) : \begin{smallmatrix} A \in \mathbf{SO}(3) \\ c \in \mathbf{R}^3 \end{smallmatrix}\right\}$

Example: TS²

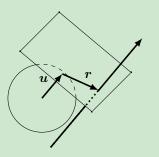
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{k,s}:

 $\omega = k d \langle \boldsymbol{u}, \boldsymbol{dr} \rangle + s \operatorname{Area}_{\mathrm{S}^2}.$

The moment map

$$\Phi(u,r) = egin{pmatrix} r imes ku + su \ ku \end{pmatrix}$$

makes X into a coadjoint orbit of G.



1. Quantum states

2. Localize states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Euclid's group G = $\left\{g = \left(\begin{smallmatrix} A & c \\ 0 & 1 \end{smallmatrix}\right) : \begin{smallmatrix} A \in \mathbf{SO}(3) \\ c \in \mathbf{R}^3 \end{smallmatrix}\right\}$

Example: TS²

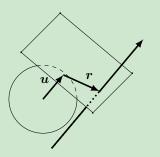
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{k,s}:

 $\omega = k \ d\langle u, dr
angle + s \operatorname{Area}_{\mathrm{S}^2}.$

The moment map

$$\Phi(u,r) = egin{pmatrix} r imes ku + su \ ku \end{pmatrix}$$

makes X into a coadjoint orbit of G.



1. Quantum states

2. Localize states

3. Nilpoten groups

4. Compac groups

5. Euclid's group

Euclid's group G = $\left\{g = \left(\begin{smallmatrix} A & c \\ 0 & 1 \end{smallmatrix}\right) : \begin{smallmatrix} A \in \mathbf{SO}(3) \\ c \in \mathbf{R}^3 \end{smallmatrix}\right\}$

Example: TS²

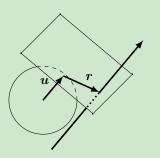
G acts naturally and symplectically on the manifold $X \simeq TS^2$ of oriented lines (a.k.a. light rays) in \mathbb{R}^3 . 2-form_{k,s}:

 $\omega = k \ d\langle u, dr \rangle + s \operatorname{Area}_{\mathrm{S}^2}.$

The moment map

$$\Phi(\boldsymbol{u}, \boldsymbol{r}) = egin{pmatrix} \boldsymbol{r} imes \boldsymbol{k} \boldsymbol{u} + \boldsymbol{s} \boldsymbol{u} \ \boldsymbol{k} \boldsymbol{u} \end{pmatrix}$$

makes X into a coadjoint orbit of G.



1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

Ne have localized states on 3 types of lagrangians:

a): the tangent space at the north pole

 $\begin{pmatrix} a & a \\ a & b \end{pmatrix} = \begin{pmatrix} a & a \\ a & b \end{pmatrix} = \begin{pmatrix} a & a \\ a & b \end{pmatrix}$ other

if Acy = cy,

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:

a): the tangent space at the north pole

b): the zero section

if $Ae_3 = e_3$, otherwise.

(c): the equator's normal bundle

1. Quantum states

 Localized states

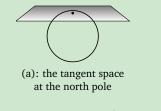
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(b): the zero section

(c): the equator's normal bundle

(b) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$ (c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

1. Quantum states

2. Localized states

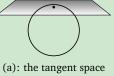
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

(c): the equator's normal bundle

(a)
$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} \end{cases}$$

if $Ae_3 = e_3$, otherwise.

(c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(||kc_{\perp}||) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

 $e^{i\langle ke_3,c\rangle}$

0

 Quantum states

 Localized states

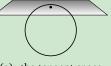
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

(b): the zero section

normal bundle

(a)
$$m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3, c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$$

(b) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin ||kc||}{||kc||}$
(c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(||kc_1||) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

1. Quantum states

 Localized states

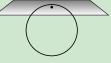
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

(b): the zero section

(a) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i(ke_3,c)} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$ (b) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$ (c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

1. Quantum states

 Localized states

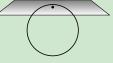
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

(b): the zero section

(a)
$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i(ke_3,c)} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$$

(b) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin ||kc||}{||kc||}$
(c) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(||kc_\perp||) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

 Quantum states

 Localized states

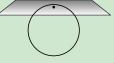
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

(b): the zero section

(a) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3, c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$ (b) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$ (c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

1. Quantum states

 Localized states

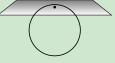
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

(b): the zero section

(a) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3,c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$ (b) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$ (c) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

1. Quantum states

 Localized states

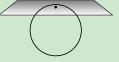
3. Nilpoten groups

4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:



(a): the tangent space at the north pole

section

normal bundle

cyclic vector:

$$\psi(\mathbf{r}) = e^{-ikz}$$

(b)
$$m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$$

(c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

(a) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3,c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$

1. Quantum states

 Localized states

3. Nilpoten groups

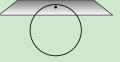
4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:

(a) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3,c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$



(a): the tangent space at the north pole

section

normal bundle

cyclic vector:

$$\psi(\mathbf{r}) = e^{-ikz}$$

b)
$$m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$$
 $\psi(r) = \frac{\sin \|kr\|}{\|kr\|}$
c) $m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases}$

1. Quantum states

 Localized states

3. Nilpoten groups

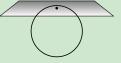
4. Compac groups

5. Euclid's group

Case s = 0:

We have localized states on 3 types of lagrangians:

(a) $m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\langle ke_3,c \rangle} & \text{if } Ae_3 = e_3, \\ 0 & \text{otherwise.} \end{cases}$



(a): the tangent space at the north pole

b): the zero section

cyclic vector:

$$\psi(\mathbf{r}) = e^{-ikz}$$

(b)
$$m \begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \frac{\sin \|kc\|}{\|kc\|}$$
 $\psi(r) = \frac{\sin \|kr\|}{\|kr\|}$
(A c) $\int J_0(\|kc\|)$ if $Ae_3 = \pm e_3$.

(c)
$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} J_0(\|kc_{\perp}\|) & \text{if } Ae_3 = \pm e_3, \\ 0 & \text{otherwise} \end{cases} \psi(r) = J_0(\|kr_{\perp}\|)$$

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i(ke_3,c)} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \rightarrow S^2\}, \text{ with } G-action <math>(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u) \text{ where } J\delta u = j(u)\delta u.$ Putting

$$\mathsf{F}(r) = (\mathsf{B} + \mathrm{iE})(r) := \sum_{u \in \mathbb{S}^2} \mathrm{e}^{-(u,kr)\mathsf{J}}(b - \mathrm{iJ}b)(u)$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

 $div \mathbf{B} = 0, \qquad curl \mathbf{B} = k\mathbf{B},$ $div \mathbf{E} = 0, \qquad curl \mathbf{E} = k\mathbf{E},$

with G-action $(gF)(r) = AF(A^{-1}(r - c))$. The cyclic vector is $F(r) = e^{-ikz}(e_1 - ie_2)$.

1. Quantum states

2. Localized states

 Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle ke_3,c\rangle} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \rightarrow S^2\}, \text{ with } G-action <math>(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u) \text{ where } J\delta u = j(u)\delta u.$ Putting

$$\mathbf{F}(r) = (\mathbf{B} + \mathrm{i}\mathbf{E})(r) := \sum_{u \in \mathbb{S}^2} \mathrm{e}^{-\langle u, kr \rangle \mathrm{J}}(b - \mathrm{i}\mathrm{J}b)(u)$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

 $div \mathbf{B} = 0, \qquad \mathbf{curl} \, \mathbf{B} = k\mathbf{B},$ $div \mathbf{E} = 0, \qquad \mathbf{curl} \, \mathbf{E} = k\mathbf{E},$

with G-action $(gF)(r) = AF(A^{-1}(r - c))$. The cyclic vector is $F(r) = e^{-ikz}(e_1 - ie_2)$.

1. Quantum states

 Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i(ke_3,c)} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

GNS_{*m*} = { ℓ^2 sections *b* of the tangent bundle TS² \rightarrow S²}, with G-action (*gb*)(*u*) = e^{(*u*,*kc*)J}Ab(A⁻¹*u*) where J δ *u* = j(*u*) δ *u*. Putting

$$\mathbf{F}(r) = (\mathbf{B} + \mathrm{i}\mathbf{E})(r) := \sum_{u \in \mathrm{S}^2} \mathrm{e}^{-\langle u, kr \rangle \mathrm{J}} (b - \mathrm{i}\mathrm{J}b)(u)$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

 $div \mathbf{B} = 0, \qquad \mathbf{curl} \, \mathbf{B} = k\mathbf{B},$ $div \mathbf{E} = 0, \qquad \mathbf{curl} \, \mathbf{E} = k\mathbf{E},$

with G-action $(g\mathbf{F})(r) = \mathbf{AF}(\mathbf{A}^{-1}(r-c))$. The cyclic vector is $\mathbf{F}(r) = \mathbf{e}^{-ikz}(e_1 - ie_2)$.

1. Quantum states

2. Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle ke_3,c\rangle} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\}, \text{ with}$ G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u$. Putting

$$\mathbf{F}(r) = (\mathbf{B} + \mathrm{i}\mathbf{E})(r) := \sum_{u \in \mathrm{S}^2} \mathrm{e}^{-\langle u, kr \rangle \mathrm{J}} (b - \mathrm{i}\mathrm{J}b)(u)$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

 $div \mathbf{B} = 0, \qquad \mathbf{curl} \, \mathbf{B} = k\mathbf{B},$ $div \mathbf{E} = 0, \qquad \mathbf{curl} \, \mathbf{E} = k\mathbf{E},$

with G-action $(gF)(r) = AF(A^{-1}(r-c))$. The cyclic vector is $F(r) = e^{-ikz}(e_1 - ie_2)$.

1. Quantum states

 Localized states

 Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle ke_3,c\rangle} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\}, \text{ with}$ G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u$. Putting

$$\mathbf{F}(\mathbf{r}) = (\mathbf{B} + \mathrm{i}\mathbf{E})(\mathbf{r}) := \sum_{\mathbf{u} \in \mathrm{S}^2} \mathrm{e}^{-\langle \mathbf{u}, k\mathbf{r} \rangle \mathrm{J}} (\mathbf{b} - \mathrm{i}\mathrm{J}\mathbf{b})(\mathbf{u})$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

 $\begin{cases} \operatorname{div} \mathbf{B} = 0, & \operatorname{curl} \mathbf{B} = k\mathbf{B}, \\ \operatorname{div} \mathbf{E} = 0, & \operatorname{curl} \mathbf{E} = k\mathbf{E}, \end{cases}$

with G-action $(gF)(r) = AF(A^{-1}(r - c))$. The cyclic vector is $F(r) = e^{-ikz}(e_1 - ie_2)$.

1. Quantum states

 Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle ke_3,c\rangle} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\}, \text{ with}$ G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u$. Putting

$$\mathbf{F}(\boldsymbol{r}) = (\mathbf{B} + \mathrm{i}\mathbf{E})(\boldsymbol{r}) := \sum_{\boldsymbol{u} \in \mathrm{S}^2} \mathrm{e}^{-\langle \boldsymbol{u}, k \boldsymbol{r} \rangle \mathrm{J}} (\boldsymbol{b} - \mathrm{i}\mathrm{J}\boldsymbol{b})(\boldsymbol{u})$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

 $\begin{cases} \operatorname{div} \mathbf{B} = 0, & \operatorname{curl} \mathbf{B} = k\mathbf{B}, \\ \operatorname{div} \mathbf{E} = 0, & \operatorname{curl} \mathbf{E} = k\mathbf{E}, \end{cases}$

with G-action $(gF)(r) = AF(A^{-1}(r-c))$. The cyclic vector is $F(r) = e^{-ikz}(e_1 - ie_2)$.

1. Quantum states

 Localized states

3. Nilpoten groups

4. Compa groups

5. Euclid's group

Case s = 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

$$m\begin{pmatrix} A & c \\ 0 & 1 \end{pmatrix} = \begin{cases} e^{i\alpha}e^{i\langle ke_3,c\rangle} & \text{if } A = e^{j(\alpha e_3)}, \quad (j(\alpha) = \alpha \times \cdot) \\ 0 & \text{otherwise.} \end{cases}$$

 $GNS_m = \{\ell^2 \text{ sections } b \text{ of the tangent bundle } TS^2 \to S^2\}, \text{ with}$ G-action $(gb)(u) = e^{\langle u, kc \rangle J}Ab(A^{-1}u)$ where $J\delta u = j(u)\delta u$. Putting

$$\mathbf{F}(\mathbf{r}) = (\mathbf{B} + \mathrm{i}\mathbf{E})(\mathbf{r}) := \sum_{\mathbf{u} \in \mathrm{S}^2} \mathrm{e}^{-\langle \mathbf{u}, k\mathbf{r} \rangle \mathrm{J}} (\mathbf{b} - \mathrm{i}\mathrm{J}\mathbf{b})(\mathbf{u})$$

one obtains a Hilbert space of almost-periodic solutions of the reduced Maxwell equations

$$div \mathbf{B} = 0, \qquad \mathbf{curl} \, \mathbf{B} = k\mathbf{B},$$
$$div \mathbf{E} = 0, \qquad \mathbf{curl} \, \mathbf{E} = k\mathbf{E},$$

with G-action $(g\mathbf{F})(\mathbf{r}) = A\mathbf{F}(A^{-1}(\mathbf{r} - \mathbf{c}))$. The cyclic vector is $\mathbf{F}(\mathbf{r}) = e^{-ikz}(e_1 - ie_2)$.