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Quantum states

(L,$): Kostant-Souriau line bundle over symplectic manifold (X,ω).

Definition (Souriau 1990)
A quantum state

is a state m of Aut(L) such that∣∣∣ n∑
j=1

cjm(exp(Zj ))
∣∣∣ 6 sup

x∈X

∣∣∣ n∑
j=1

cj eiHj (x )
∣∣∣

for all choices of n ∈ N, cj ∈ C and complete, commuting Zj ∈ aut(L)
with hamiltonians Hj : Hj (x ) = $(Zj (ξ)).

State of a group G: function m : G→ C such that 1 m(e) = 1,
2 the sesquilinear form

(c, d)m :=
∑

g ,h∈G

cgdhm(g−1h)
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for all choices of n ∈ N, cj ∈ C and complete, commuting Zj ∈ aut(L)
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State of a group G: function m : G→ C such that 1 m(e) = 1,
2 the sesquilinear form

(c, d)m :=
∑

g ,h∈G
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Gives rise to unitary G-module GNSm 3 φ such that m(g) = (φ, gφ).
(Put (·, ·)m on C[G], divide out null vectors and complete; φ = [δe].)
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for all choices of n ∈ N, cj ∈ C and complete, commuting Zj ∈ aut(L)
with hamiltonians Hj : Hj (x ) = $(Zj (ξ)).

• A quantum representation (of Aut(L), for X) is a unitary
Aut(L)-module H s.t. m(g) = (φ, gφ) is quantum ∀ unit φ ∈ H .

• Theorem (Souriau). m quantum⇒ GNSm quantum.
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Examples

None. (Unless X is zero-dimensional.)

Remark. X is a coadjoint orbit of Aut(L). We might more modestly
ask for states and representations of smaller groups (of which X is a
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• If X = {x} is an integral point-orbit, then the unique quantum
state for X is the character m(exp(Z)) = ei〈x ,Z〉.
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The statistical interpretation

Let ĝ := (compact) character group of the discrete additive group g.

We have a dense inclusion g∗ ↪→ ĝ, x 7→ ei〈x ,·〉, and projections

ĝ

âX

Theorem
A state m of G is quantum for X⇔ for each abelian a ⊂ g,
the state m ◦ exp|a of a has its spectral measure

concentrated on bX|a,
the projection (in â) of the closure bX of X (in ĝ).

This spectral measure is the probability measure μ on â such that
(m ◦ exp|a)(Z) =

∫
â
χ(Z)dμ(χ). (Bochner.)
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ĝ

âX
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Let ĝ := (compact) character group of the discrete additive group g.
We have a dense inclusion g∗ ↪→ ĝ, x 7→ ei〈x ,·〉, and projections
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âX

Theorem
A state m of G is quantum for X⇔ for each abelian a ⊂ g,
the state m ◦ exp|a of a has its spectral measure

concentrated on bX|a,
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We have a dense inclusion g∗ ↪→ ĝ, x 7→ ei〈x ,·〉, and projections

ĝ
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(m ◦ exp|a)(Z) =

∫
â
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Because this (‘Bohr’) closure operation b is drastic:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

(a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr
dense in ĝ, i.e. bX = ĝ.

(b) If G is connected nilpotent, every coadjoint orbit is Bohr dense in its
affine hull.
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Corollary

(a) If G is noncompact simple, every unitary representation of G is
quantum for every nonzero coadjoint orbit (!)

(b) If G is connected nilpotent and X spans g∗ (reduce to this case by
dividing out ann(X)), a unitary representation of G is quantum for
X⇔ the center acts in it by the character exp(Z) 7→ ei〈X,Z〉.

4 / 12

http://dx.doi.org/10.1017/etds.2013.73


Localized
Quantum

States

1. Quantum
states

2. Localized
states

3. Nilpotent
groups

4. Compact
groups

5. Euclid’s
group

Why “too many” quantum representations?

Because this (‘Bohr’) closure operation b is drastic:

Theorem (Howe-Z., dx.doi.org/10.1017/etds.2013.73)

(a) If G is noncompact simple, every nonzero coadjoint orbit is Bohr
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Localized states

So Souriau’s definition is not restrictive enough. 3 ways to proceed:

1 Hope that the much-needed selection will arise by restricting
attention to states that extend to the whole Aut(L).

2 Suppress the Bohr closure implicit in the definition. For results
along this line see arxiv.org/abs/1011.5056.

3 Take this closure seriously, because it allows interesting states:
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So Souriau’s definition is not restrictive enough. 3 ways to proceed:

1 Hope that the much-needed selection will arise by restricting
attention to states that extend to the whole Aut(L).

2 Suppress the Bohr closure implicit in the definition. For results
along this line see arxiv.org/abs/1011.5056.

3 Take this closure seriously, because it allows interesting states:
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Theorem
Let H ⊂ G be maximal subordinate to x ∈ X. Then there is a unique
quantum state for X localized at {x|h} ⊂ h∗, namely

m(g) =

¨

eix ◦ log(g) if g ∈ H,
0 otherwise.

Moreover GNSm = indG
H eix ◦ log

|H (discrete induction).

a ⊂ h ⇒ x|a certain; a t h ⇒ x|a equidistributed in â.
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Remark

Kirillov (1962) used I(x , H) := IndG
H eix ◦ log

|H (usual induction).
This is

(a) irreducible⇔ H is a polarization at x (: subordinate subgroup
such that the bound dim(G/H) > 1

2 dim(X) is attained);

(b) equivalent to I(x , H′) if H 6= H′ are two polarizations at x .
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Example: Extended Galilei group G =

¨

g =

�

1 b 1
2 b2 a

1 b c
1 e

1

�«

g∗

c∗=

















0 0 0 α
0 0 γ

0 ε
0

















∗

(p,E)

b∗
=

















0 β 0 α
0 β 0

0 0
0

















∗

q

E= 1
2 p2

B and C are maximal subordinate but only C is a polarization.
So i(x , C), I(x , C), i(x , B) are irreducible but I(x , B) is not.

All act by (gψ)( r
t ) = e−iae−i{b(r−c)− 1

2 b2(t−e)}
ψ
� r−c−b(t−e)

t−e
�

, but

1 I(x , B) in L2 functions of ( r
t )

2 I(x , C) in L2 solutions of Schrödinger’s equation i 6tψ = 1
2 6

2
rψ

3 i(x , C) in almost periodic solutions, norm2 lim
R→∞

1
2R

∫ R
−R |ψ|

2dr

4 i(x , B) in `2 functions
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Example: TS2

u r

G acts naturally and symplectically on
the manifold X ' TS2 of oriented lines
(a.k.a. light rays) in R3. 2-formk ,s :

ω = k d〈u, dr〉 + s AreaS2 .

The moment map

Φ(u, r) =
�

r × ku + su
ku

�

makes X into a coadjoint orbit of G.
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Case s= 0:
We have localized states on 3 types of lagrangians:

(b): the zero
section

(c): the equator’s
normal bundle

(a): the tangent space
at the north pole

(a) m
�

A c
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Case s= 1 (zero section no longer lagrangian):

The unique quantum state localized on the tangent space (a) becomes

m
�

A c
0 1

�

=

¨

eiαei〈ke3,c〉 if A = e j(αe3), ( j(α) = α× · )
0 otherwise.

GNSm = {`2 sections b of the tangent bundle TS2 → S2}, with
G-action (gb)(u) = e〈u,kc〉JAb(A−1u) where Jδu = j(u)δu. Putting

F(r) = (B + iE)(r) :=
∑
u∈S2

e−〈u,kr〉J(b− iJb)(u)

one obtains a Hilbert space of almost-periodic solutions of the
reduced Maxwell equations

¨

div B = 0, curl B = kB,

div E = 0, curl E = kE,

with G-action (gF)(r) = AF(A−1(r − c)). The cyclic vector is
F(r) = e−ikz (e1 − ie2).
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