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X=UxpV where V=T1"1(c).
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Theorem 1 (Generalized barycentric decomposition)

(1) Every primary N-space (X, w, IT) over U is such a flat bundle.

Indeed we always have

X=UxpV

where

V=1""(0).

(2) Two primary N-spaces (X;, w;, II;) over U are isomorphic iff
the fibers V; = II; ! (c) are isomorphic as primary I'-spaces.

Sketch of proof of (1).

* T, X=T,N() & T,V.

* ¢(v) C T,N(w) NT,V,
so K° acts trivially on V,
so Kacts viaI' = K/K°.

(n,v)

n(v) n([eK®, v])

induces the desired map.

V=1I"1(c)

V=v/l
=X/N




About I' (N connected):

* N compact or exponential ==TI"'=0 =

7/14



About I' (N connected):

* N compact or exponential ==T'=0 =X=UxWV.
* Nsolvable = I' = Z¢.

7/14



About I' (N connected):

* N compact or exponential ==T'=0 =X=UxWV.
* Nsolvable = T' = Z4.

* N semisimple = I" = finite product of Z,, S3, S4, Ss.

7/14



Primary

Spaces
Mackey Theory
Symplectic Mackey
Theorem 1
Non-split example

About I (N connected):

* N compact or exponential = T'=0 =X=UxV.
* N solvable = I' = Z¢.

* N semisimple = I" = finite product of Z, Ss3, S4, Ss.

/14



Primary

Spaces
Mackey Theory
Symplectic Mackey
Theorem 1
Non-split example
Theorem 2
Corollaries
Non-split example

n*/N
7
U = N(c)
K= N,
0
I = K/K

About I (N connected):

N compact or exponential = I'=0 =X=UxW.
N solvable = TI' = Z¢,

N semisimple = I" = finite product of Z4, S3, S4, Ss.

N, U exist such that I" is any preassigned finite group.
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Spaces

* N compact or exponential = T'=0 =X=UxV.
LD * Nsolvable = I' = Z¢.
* N semisimple = I" = finite product of Z, Ss3, S4, Ss.

Theorem 1

it cxampl * N, U exist such that I is any preassigned finite group.

A vast supply of examples: KKS reduced spaces

If (Y, o, ¥) is any hamiltonian N-space, then under appropriate
transversality conditions one can form the reduced space at U,

X = U 1(U)/ ker(o).

This is a primary N-space over U, hence a flat bundle as above.
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i * U =R x S!, coadjoint orbit of N = E(2). SoU=R2, I = Z.
* V = T? with Z-action k(R, S) = (RS*, S): iterated Dehn twist.

Nomsplt e Then X = U xp V doesn’t split. In fact it isn’t even homeomorphic to
the product of U, nor of any covering of U, by any manifold.

e Proof. 1 00 p 1 0 O O\

1 r s p,4q,7,8 1 2 Z
2 2 s Y 1

R* x T* = 1 g real mod 1 0ol°

\ 1 \ 1)

1 0 0 p 1 0 0O

1 r s p,q,7,8 1 2 Z
2 2 P SR

RO T = 1 ¢ real mod 1 Z

1 \ 1

So 71 (X) is the Heisenberg group over Z. That is impossible for the
product of a cylinder (or plane) by any surface. [
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A non-split example

i, * U =R x S!, coadjoint orbit of N = E(2). SoU=R2, I = Z.

* V = T? with Z-action k(R, S) = (RS*, S): iterated Dehn twist.

Nomsplt e Then X = U xp V doesn’t split.

e Other proof.

* If X did split nontrivially as U x T then the fiber V would not
be connected; but T? is.

* If X did split trivially as U x T then the fiber V would be
trivial as a I"-space; but T? isn’t. O

Remark: Here V/T is not a manifold nor even an orbifold.
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spaces that arise by restriction of an action of the larger group:

G. G-action '1> > g* j G
T 3 Diff(X, 0) |
N ~ N-action \ D G

Then we must have U € (n*/N)C. So G acts on U, and the stabilizer
L = G, acts on the fiber V= II"1(¢). Our theorem becomes:

Theorem 2

(1) The bijection X = V of Theorem 1 induces another between
(a) N-primary hamiltonian G-spaces (X, », ®) over U;
(b) K-primary hamiltonian L-spaces (V, wy, ¥) over {c}.

(2) Two objects X3, X5 in (a) are isomorphic iff the corresponding
V; = II;7(c) in (b) are isomorphic as hamiltonian L-spaces.
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(1) The bijection X = V of Theorem 1 induces another between
(a) N-primary hamiltonian G-spaces (X, , ®) over U;
(b) K-primary hamiltonian L-spaces (V, wy, ¥) over {c‘g}.

Sketch of proof.
(a — b) is easy (restrict the action and moment map of G to L).

(b — a): given V we must construct on X := U xr V a G-action and
moment map P satisfying

G. G-action (LS g*
" Diff(X, ») X
N ~ N-action II 7 n*,

Now G does act on U preserving wy, but to get a moment map we
must climb to U, where G need not act. Therefore we introduce G
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... G defined by ) )

|

1— AK°) — A(K°) —— 1

Ll

1— AK) — NxL—5G——1

|

1------ » T ==-=--5 > G ------ >G----- 1
1 1 1,

where A(k) = (k~1, k) and n(n, 1) = nl.

10/
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(1) The bijection X = V of Theorem 1 induces another between
e (a) N-primary hamiltonian G-spaces (X, w, ®) over U;
(b) K-primary hamiltonian L-spaces (V, wy, ¥) over {c‘g}.

Now G lifts to act on U and V by
[n, (%) = nial ™!, resp. [n, (v) = I(v)
with moment maps
¢ () = u(o), resp. () =7(¥(v) - &)

where we have fixed an element ¢ € g* projecting to ¢ € n* and
j denotes the isomorphism ann;- () — anng- (n) which exists
because G = NL implies G/N = L/K.

¢ and ¢ depend on the choice of ¢, but ¢ + ¢ : UxV—g*
doesn’t.
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(1) The bijection X = V of Theorem 1 induces another between
e (a) N-primary hamiltonian G-spaces (X, , ®) over U;
(b) K-primary hamiltonian L-spaces (V, wy, ¥) over {C‘g}.

Moreover one finds, miraculously,

¢ (G(@) = g(¢ (@) + ()
D(EW) = (P () —8(3)

where 0([n, []) = ¢ — I(¢). So the two moment maps are not in
general equivariant but their sum is. Finally one checks (using
I <« G) that the diagonal action g(@, v) = (§(@), g(v)) on UxV
and its moment map ¢ + ¢ descend to the sought G-action and
moment map on U xp V. [

Rerparki 1\1 and L inject as subgroups N =[N, el and L = [e, L]
of G = NL.



Not only does G act on X = U xp V, but the larger group G x G acts
factor-wise on U x V with moment map (¢, ) such that

([, v]) = ¢ (@) + (o).

The second action is really an action of G/N with moment map
¢ : V — anng-(n).
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Not only does G act on X = U x V, but the larger group G x G acts
factor-wise on U x V with moment map (¢, ¢) such that

(@, v]) = ¢ (@) + ¢(v).

The second action is really an action of G/N with moment map
¢ : V= anng- ().

Corollaries

Corollary 2 (of proof)

Attached to e~ach U € (n*/N)¢ is a well-defined cohomology class
[0] € H'(G/N, (g/n)*) which measures the obstruction to making
U a hamiltonian G-space, and vanishes if ¢ = 0.
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Spaces Corollary 1 (Generalized Koenig Theorem)

Not only does G act on X = U x V, but the larger group G x G acts
factor-wise on U x V with moment map (¢, ¢) such that

(@, v]) = ¢ (@) + ¢(v).

The second action is really an action of G/N with moment map
¢ : V= anng- ().

Corollaries

Corollary 2 (of proof)

Attached to each U € (n*/N)€ is a well-defined cohomology class
[6] € H! (G/ N, (g /n)*) which measures the obstruction to making
U a hamiltonian G-space, and vanishes if ¢ = 0. If ¢|¢ # 0, then
[(DB(e)(-),-)] € H2(g/n,R) is the class of the central extension

0—¢/j—1/i—1/t—0 ™

where j = ker(cje).



We call this extension (*) the infinitesimal Mackey obstruction of
U (relative to G).

Remark: When U is integral, i.e. K admits a character y with
differential 7c, (*) integrates to a group extension

1—K/J—LJ—L/K—1

where J = ker(y).
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—d U (relative to G).

e Remark: When U is integral, i.e. K admits a character y with
B differential <cp¢, (*) integrates to a group extension

1—K/J—L/J—LK-—1

Theorem

Corollaries

B where J = ker(y). This is precisely the Mackey obstruction found
by Auslander-Kostant and Duflo for the representation “quantizing”
(U, ) (N nilpotent, G solvable).
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A non-split example

1 ¢ 0 e f
1 0 0 e
— _ 2nia a,c, e:fER
G=<g= e 0 b beC
1l a
1

N={g:c=e=0}
Identify g* with R x C x R® by (p, z, r, s, t) = value of the 1-form
pda + Re(zdb) — rdc — sde — tdf

at the identity. So g* — n* writes (p, z, 7, s, t) — (p, 2, t). The
orbit X = G(0, 1,0, 0, 1) is N-primary over U with fiber V, where
X= {(p; e2m'q’ T, S, 1) pb,q,7,S € R}:
U={(p,e*™%1) : p,g €R}, wy = dp A dg,
v={(0,1,7,s,1): 7,s € R}, wy = dr A ds.



We claim that X does not split as U x V (or otherwise). ~ = ¢
of this is that wx = dp A dq + dg A dr + dr A ds # oy + wy.
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Proof Since the fiber V is connected, it is enough to see that I"
acts nontrivially on it.
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S of this is that wx = dp A dq + dg A dr + dr A ds # oy + wy.
Proof  Since the fiber V is connected, it is enough to see that "
e acts nontrivially on it.
(ﬂ*/N)G
w
U = N(c)
K= N,
L=G,
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acts nontrivially
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We claim that X does not split as U x V (or otherwise). A first hint
P of this is that wx = dp A dq + dg A dr + dr A ds # oy + wy.
Proof  Since the fiber V is connected, it is enough to see that "
e acts nontrivially on it. But one finds
P p + e + Re(2nibe?™?z)
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We claim that X does not split as U x V (or otherwise). A first hint
of this is that wx = dp A dq + dg A dr + dr A ds # oy + wy.

Proof  Since the fiber V is connected, it is enough to see that "
acts nontrivially on it. But one finds

0 0
1 1
klr]|= r
S s+ a
1 1
o R e 1000 f
_ e(2nibe " o - 1000 . a€Z
andn(%)—( ezl ).SOK—N((%))—{( 1(1)51;).17’](61{}

and I' = K/K°= Z acts nontrivially on V. [
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