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Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

GG G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

GG G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =
�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1

2

�

reduce us to the primary case:
X restricts to a multiple of one irreducible U ∈ Irr(N)G.

3 Then X = U⊗ T, with N-action: (given)⊗(trivial)

G-action: (projective)⊗(projective).

G finite G locally compact G Lie

1 2 Frobenius 1898 Mackey 1949 Kirillov 1962
3 Clifford 1937 Mackey 1958 Duflo 1982

2 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

Now assume G and N are Lie groups. We want a parallel

Symplectic Mackey Theory

To classify
�

(X,ω,Φ) : homogeneous Hamiltonian G-space
	

isomorphism
,

expect 3 steps:

1

2

�

reduce us to the primary case:
X→ n∗ is onto one coadjoint orbit U ∈ (n∗/N)G.
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Definition (Primary N-space)

A hamiltonian N-space X = (X,ω,Π) is primary if its moment map
Π is onto a single coadjoint orbit U of N.
If N (or U) needs emphasis we say N-primary (over U).

Examples:

1 Any homogeneous hamiltonian N-space—since its moment
map is an orbit covering, Ū→ U.

2 Any product Ū× T of a homogeneous covering by a trivial
hamiltonian N-space T (trivial action, zero moment map).
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Ū× T (Ū homogeneous, T trivial).
We say it splits trivially if Ū = U, i.e. X = U× T.
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2 Any product Ū× T of a homogeneous covering by a trivial
hamiltonian N-space T (trivial action, zero moment map).

Definition (Split space)

We say that a primary N-space X over U splits if has this form,
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n∗/N

∈

U = N(c)

K = Nc

3 “Flat bundles”: Above U there a maximal homogeneous
covering

Ũ
ρ−→ U,

namely N/Ko −→ N/K, with principal group

Γ = K/Ko.

So every time Γ acts on a symplectic manifold V while
preserving its 2-form, we can form the associated bundle

Ũ×Γ V Π−−−→ U

(the set of orbits [ũ , v] of the product action of Γ on Ũ× V).
This is naturally a primary N-space over U, with

• 2-form: ρ∗ωU + ωV pushed to the quotient,
• N-action: n([ũ , v]) = [n(ũ), v],
• moment map: Π([ũ , v]) = ρ(ũ).

Conversely:
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Conversely:

5 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

n∗/N

∈

U = N(c)

K = Nc

3 “Flat bundles”: Above U there a maximal homogeneous
covering

Ũ
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• moment map: Π([ũ , v]) = ρ(ũ).
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∈

U = N(c)

K = Nc

Γ = K/Ko

Theorem 1 (Generalized barycentric decomposition)

(1) Every primary N-space (X,ω,Π) over U is such a flat bundle.
Indeed we always have

X = Ũ×Γ V where V = Π−1(c).

(2) Two primary N-spaces (Xi ,ωi ,Πi) over U are isomorphic iff
the fibers Vi = Π−1

i (c) are isomorphic as primary Γ-spaces.
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c c

γ

v

N(v)

V = Π−1(c)

V̇ = V/Γ
= X/N

• TvX = TvN(v)⊕ TvV.

• k(v) ⊂ TvN(v) ∩ TvV,
so Ko acts trivially on V,
so K acts via Γ = K/Ko.

•

n(v)

(n , v)

n([eKo, v])

induces the desired map.
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X

U Π

c c

γ

v

N(v)

V = Π−1(c)

V̇ = V/Γ
= X/N

Sketch of proof of (1).

• TvX = TvN(v)⊕ TvV.

• k(v) ⊂ TvN(v) ∩ TvV,
so Ko acts trivially on V,
so K acts via Γ = K/Ko.

•

n(v)

(n , v)

n([eKo, v])

induces the desired map.
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A vast supply of examples: KKS reduced spaces

If (Y,σ,Ψ) is any hamiltonian N-space, then under appropriate
transversality conditions one can form the reduced space at U,

X = Ψ−1(U)/ ker(σ).

This is a primary N-space over U, hence a flat bundle as above.
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A non-split example

• U = R× S1, coadjoint orbit of N = Ẽ(2). So Ũ = R2, Γ = Z.

• V = T2 with Z-action k(R, S) = (RSk , S): iterated Dehn twist.

Then X = Ũ×Γ V doesn’t split. In fact it isn’t even homeomorphic to
the product of U, nor of any covering of U, by any manifold.
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Proof.

R2 × T2 =















1 0 0 p
1 r s

1 q
1









:
p, q , r , s

real







mod









1 0 0 0
1 Z Z

1 0
1









,

R2×Z T2 =















1 0 0 p
1 r s

1 q
1









:
p, q , r , s

real







mod









1 0 0 0
1 Z Z

1 Z
1









.
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• V = T2 with Z-action k(R, S) = (RSk , S): iterated Dehn twist.
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So π1(X) is the Heisenberg group over Z. That is impossible for the
product of a cylinder (or plane) by any surface.
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Then X = Ũ×Γ V doesn’t split. In fact it isn’t even homeomorphic to
the product of U, nor of any covering of U, by any manifold.

Other proof.

• If X did split nontrivially as Ū× T then the fiber V would not
be connected; but T2 is.

• If X did split trivially as U× T then the fiber V would be
trivial as a Γ-space; but T2 isn’t.
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Remark: Here V/Γ is not a manifold nor even an orbifold.
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(n∗/N)G

∈

U = N(c)

K = Nc

L = Gc

N-primary G-spaces

Back with N normal in an ambient group G, we ask about N-primary
spaces that arise by restriction of an action of the larger group:

Diff(X,ω)
G

N

G-action

N-action

X

g∗

n∗

Φ

Π

G

G

Then we must have U ∈ (n∗/N)G. So G acts on U, and the stabilizer
L = Gc acts on the fiber V = Π−1(c). Our theorem becomes:

Theorem 2

(1) The bijection X � V of Theorem 1 induces another between

(a) N-primary hamiltonian G-spaces (X,ω,Φ) over U;

(b) K-primary hamiltonian L-spaces (V,ωV,Ψ) over {c|k}.

(2) Two objects X1, X2 in (a) are isomorphic iff the corresponding
Vi = Π−1

i (c) in (b) are isomorphic as hamiltonian L-spaces.
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(1) The bijection X � V of Theorem 1 induces another between

(a) N-primary hamiltonian G-spaces (X,ω,Φ) over U;

(b) K-primary hamiltonian L-spaces (V,ωV,Ψ) over {c|k}.

Sketch of proof.

(a→ b) is easy (restrict the action and moment map of G to L).

(b→ a): given V we must construct on X := Ũ×Γ V a G-action and
moment map Φ satisfying

Diff(X,ω)
G

N

G-action

N-action

X

g∗

n∗.

Φ

Π
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G

Now G does act on U preserving ωU, but to get a moment map we
must climb to Ũ, where G need not act. Therefore we introduce G̃
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moment map Φ satisfying

Diff(X,ω)
G

N

G-action

N-action

X

g∗

n∗.

Φ

Π

G

G

Now G does act on U preserving ωU, but to get a moment map we
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. . . G̃ defined by
1 1

1 Δ(Ko) Δ(Ko) 1

1 Δ(K) N o L G 1

1 Γ G̃ G 1

1 1 1,

⟦·,·⟧

π

where Δ(k) = (k−1, k) and π(n , l) = nl .
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(a) N-primary hamiltonian G-spaces (X,ω,Φ) over U;

(b) K-primary hamiltonian L-spaces (V,ωV,Ψ) over {c|k}.

Now G̃ lifts to act on Ũ and V by

⟦n , l⟧(ũ) = nlũl−1, resp. ⟦n , l⟧(v) = l(v)

with moment maps

φ(ũ) = ũ(č), resp. ψ(v) = j (Ψ(v)− č|l)

where we have fixed an element č ∈ g∗ projecting to c ∈ n∗ and
j denotes the isomorphism annl∗(k)→ anng∗(n) which exists
because G = NL implies G/N = L/K.

φ and ψ depend on the choice of č, but φ + ψ : Ũ× V→ g∗

doesn’t.
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(1) The bijection X � V of Theorem 1 induces another between

(a) N-primary hamiltonian G-spaces (X,ω,Φ) over U;

(b) K-primary hamiltonian L-spaces (V,ωV,Ψ) over {c|k}.

Moreover one finds, miraculously,

φ(g̃(ũ)) = g(φ(ũ)) + θ(g̃)

ψ(g̃(v)) = g(ψ(v)) − θ(g̃)

where θ(⟦n , l⟧) = č − l(č). So the two moment maps are not in
general equivariant but their sum is. Finally one checks (using
Γ / G̃) that the diagonal action g̃(ũ , v) = (g̃(ũ), g̃(v)) on Ũ× V
and its moment map φ + ψ descend to the sought G-action and
moment map on Ũ×Γ V.

Remark: N and L inject as subgroups Ñ = ⟦N, e⟧ and L̃ = ⟦e , L⟧
of G̃ = ÑL̃.
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10 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

(n∗/N)G

∈

U = N(c)

K = Nc

L = Gc

(1) The bijection X � V of Theorem 1 induces another between

(a) N-primary hamiltonian G-spaces (X,ω,Φ) over U;

(b) K-primary hamiltonian L-spaces (V,ωV,Ψ) over {c|k}.

Moreover one finds, miraculously,
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(n∗/N)G

∈

U = N(c)

K = Nc

L = Gc

Corollary 1 (Generalized Kœnig Theorem)

Not only does G act on X = Ũ×Γ V, but the larger group G̃× G̃ acts
factor-wise on Ũ× V with moment map (φ,ψ) such that

Φ([ũ , v]) = φ(ũ) + ψ(v).

The second action is really an action of G̃/Ñ with moment map
ψ : V→ anng∗(n).

Corollary 2 (of proof)

Attached to each U ∈ (n∗/N)G is a well-defined cohomology class
[θ] ∈ H1(G̃/Ñ, (g/n)∗) which measures the obstruction to making
U a hamiltonian G-space, and vanishes if c|k = 0. If c|k 6= 0, then
[〈Dθ(e)(·), ·〉] ∈ H2(g/n, R) is the class of the central extension

0 −→ k/j −→ l/j −→ l/k −→ 0 (*)

where j = ker(c|k).
11 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

(n∗/N)G

∈

U = N(c)

K = Nc

L = Gc

Corollary 1 (Generalized Kœnig Theorem)
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[θ] ∈ H1(G̃/Ñ, (g/n)∗) which measures the obstruction to making
U a hamiltonian G-space, and vanishes if c|k = 0. If c|k 6= 0, then
[〈Dθ(e)(·), ·〉] ∈ H2(g/n, R) is the class of the central extension

0 −→ k/j −→ l/j −→ l/k −→ 0 (*)

where j = ker(c|k).
11 / 14



Primary
Spaces

Motivation
Mackey Theory

Symplectic Mackey

Primary
N-spaces
Theorem 1

Non-split example

N-primary
G-spaces
Theorem 2

Corollaries

Non-split example

(n∗/N)G

∈

U = N(c)

K = Nc

L = Gc

Corollary 1 (Generalized Kœnig Theorem)
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U = N(c)

K = Nc

L = Gc

Definition

We call this extension (*) the infinitesimal Mackey obstruction of
U (relative to G).

Remark: When U is integral, i.e. K admits a character χ with
differential ic|k, (*) integrates to a group extension

1 −→ K/J −→ L/J −→ L/K −→ 1

where J = ker(χ). This is precisely the Mackey obstruction found
by Auslander-Kostant and Duflo for the representation “quantizing”
(U, χ) (N nilpotent, G solvable).
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(n∗/N)G

∈

U = N(c)

K = Nc

L = Gc

A non-split example

N =















n =













1 0 0 0 0
1 0 0 0

e2πia 0 b
1 a

1













:
a ∈ R
b ∈ C















N =
�

g : c = e = 0
	

.

Identify g∗ with R× C× R3 by (p, z , r , s , t) = value of the 1-form

pda + Re(z̄ db)− rdc − sde − tdf

at the identity. So g∗ → n∗ writes (p, z , r , s , t) 7→ (p, z , t). The
orbit X = G(0, 1, 0, 0, 1) is N-primary over U with fiber V, where

X =
��

p, e2πiq , r , s , 1
�

: p, q , r , s ∈ R
	

,

U =
��

p, e2πiq , 1
�

: p, q ∈ R
	

, ωU = dp ∧ dq ,

V =
��

0, 1, r , s , 1
�

: r , s ∈ R
	

, ωV = dr ∧ ds .
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