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Abstract: J.-M. Souriau spent the years 1960-2000 in a uniquely dogged inquiry into
what exactly quantization is and isn’t. I will report on results (of arXiv:1310.7882 etc.)
pertaining to the last (still unsatisfactory!) formulation he gave.
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J.-M. Souriau

What is quantization?

« How do I arrive at the matrix
that represents a given quantity in
a system of known constitution? »

— H. Weyl, Quantenmechanik und
Gruppentheorie (1927)
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Let (X, ») be a prequantizable symplectic manifold: [w] € H2(X, Z).

Prequantization constructs a representation of the Poisson algebra
C*(X), which is “too large” because not irreducible enough.

(We then need “polarization” to cut it down.)
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Prequantization

Prequantization

Let (X, w) be a prequantizable symplectic manifold: [w] € H*(X, Z).

Mantra:

Prequantization constructs a representation of the Poisson algebra
C*>°(X), which is “too large” because not irreducible enough.

(We then need “polarization” to cut it down.)

Souriau:

Not the point! What prequantization constructs is a group Aut(L)
with “Lie algebra” C*°(X), of which X is a coadjoint orbit.

(Every prequantizable symplectic manifold is a coadjoint orbit, 1985.)
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Quantization is some sort of functor from a “classical” category
(symplectic manifolds and functions?) to a “quantum” category
(Hilbert spaces and self-adjoint operators?).

Besides, it doesn’t exist (“by van Hove’s no-go theorem”).
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Mantra:

Quantizaion? Quantization is some sort of functor from a “classical” category
(symplectic manifolds and functions?) to a “quantum” category
(Hilbert spaces and self-adjoint operators?).

Besides, it doesn’t exist (“by van Hove’s no-go theorem”).

Souriau:

No! Quantization is a switch from classical states to quantum states:
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® C[G] := {finitely supported functions G — C}
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® C[G] := {finitely supported functions G — C} > ¢ = > ; cs0?
is a *-algebra: 89 -3" =389 (39)* = 39" (and a G-module)
® C[G]' = CC = {all functions m : G — C}: (m,c) = c,m(g)
e G-invariant sesquilinear forms on C[G] write (c, d) — {(m, ¢* - d)
(8%, g5°) — m(g)

Group algebra

Definition, Theorem (GNS, L. Schwartz)
Call m a state of G if positive definite: (m, c* - ¢) > 0, and m(e) = 1.
e Then C[G]/C[G]- is a unitary G-module, realizable in C[G]’ as
|2

GNS.,, = { € CC such that [|g||? := sup,ccq (225 < oo}

(m,

e 77 is cyclic in GNS,, (its G-orbit has dense span).

® Any unitary G-module with a cyclic unit vector ¢ is GNS,, . ).
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Souriau

Quantzaions - If v+ G — U(1) is a character, then y is a state and
Group algebra

Classical GNSX = CX

Quantum

(= C where G acts by y).

Nilpotent

Reductive
o _

{ n(g) ifgeH,

If n is a state of a subgroup H C G and m(g) = .
0 otherwise,

then m is a state and
GNS,, = ind{; GNS,,

@:»
1

(lower case “i” for discrete a.k.a. /2 induction).
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Let X be a coadjoint orbit of G (say a Lie group). « o oo
of (g, +) correspond to probability measures . on g* (Bochner):

m(Z) = / el®? du(z). €))
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Let X be a coadjoint orbit of G (say a Lie group). Continuous states m
of (g, +) correspond to probability measures p on g* (Bochner):

m(Z) = / @2 du(z). 1)
o

Definition

A statistical state for X is a state m of g which is concentrated on X,
in the sense that its spectral measure (u above) is.
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Classical (statistical) states

Let X be a coadjoint orbit of G (say a Lie group). Continuous states m
of (g, +) correspond to probability measures p on g* (Bochner):

m(Z) = / '@ dy(z). 1)
o

Definition
A statistical state for X is a state m of g which is concentrated on X,
in the sense that its spectral measure (u above) is.

This works even without assuming continuity of m: in (1), make g
discrete and hence replace g* by its Bohr compactification

¢ = {all characters of g},

in which X c g* embeds by z > el(®),

Notation: bX = closure of X in § (“Bohr closure”).
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Let X be a coadjoint orbit of G (say a Lie group).

Definition (equivalent to Souriau’s)

A quantum state for X is a state m of G, such that for every abelian
subalgebra a of g, the state m o exp|, of a is concentrated on bX|,.
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If V.= GNS,,, then (¢, - ¢) is a quantum state for X for all unit ¢ € V.

Definition

G-modules V with this property are quantum representations for X.
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If V.= GNS,,, then (¢, - ¢) is a quantum state for X for all unit ¢ € V.
Definition
G-modules V with this property are quantum representations for X.

They need not be continuous, nor irreducible on transitive subgroups.

Suppose a state n of a connected Lie group H is quantum for a point-
orbit {y} C (h*)!. Then y is integral, and n is the character such that

n(exp(2)) = e'¥2, 2
A representation of H is quantum for {y} iff it is a multiple of this n.

We will call states of G D H that restrict to (2) eigenstates belonging
to y € (h*) — or by abuse, to the (generically coisotropic) preimage
of y in some X C g*. Weinstein (1982) called attaching waves to
lagrangian submanifolds the FUNDAMENTAL QUANTIZATION PROBLEM.
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We are rejecting this representation for spectral reasons. Unlike van
Hove who rejected it for being reducible on the Heisenberg subgroup,
we can still hope that Aut(L) has a representation quantizing X.
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Let L be the prequantization line bundle over X = (R?, dp A dq).
The resulting representation of Aut(L) in L?(X) is not quantum for X.

Sketch of proof:

It represents the flow of the bounded hamiltonian H(p, ¢) = sinp by a
1-parameter group whose self-adjoint generator is unbounded — it’s
equivalent to multiplication by sinp + (k — p) cos p in L?(R2, dp dk).

Remark

We are rejecting this representation for spectral reasons. Unlike van
Hove who rejected it for being reducible on the Heisenberg subgroup,
we can still hope that Aut(L) has a representation quantizing X.

(Of course, this remains purely verbal until someone finds it!)
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closure as its affine hull.

10/18


https://doi.org/10.1017/etds.2013.73

Quantization,

after Souriau Quantum StateS

On the other hand. ..
Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

® G noncompact simple: every nonzero coadjoint orbit has bX = bg*.

Quantum ® G connected nilpotent: every coadjoint orbit has the same Bohr
closure as its affine hull.

10/18


https://doi.org/10.1017/etds.2013.73

Quantization,

after Souriau Quantum StateS

On the other hand. ..
Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

® G noncompact simple: every nonzero coadjoint orbit has bX = bg*.

Quantum ® G connected nilpotent: every coadjoint orbit has the same Bohr
closure as its affine hull.

Corollary

® G noncompact simple: every unitary representation is quantum for
every nongero coadjoint orbit.

10/18


https://doi.org/10.1017/etds.2013.73

Sher Sourine Quantum states
On the other hand. ..

Theorem (Howe-Z., Ergodic Theory Dynam. Systems 2015)

® G noncompact simple: every nonzero coadjoint orbit has bX = bg*.

Quantum ® G connected nilpotent: every coadjoint orbit has the same Bohr
closure as its affine hull.

Corollary

® G noncompact simple: every unitary representation is quantum for
every nongero coadjoint orbit.

® G simply connected nilpotent: a unitary representation is quantum
for X iff the center of G/ exp(ann(X)) acts by the correct character.
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(z,[h,h]) =0
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e Souri Eigenstates in nilpotent groups
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Theorem: The conjecture is true for G = SLy(R) or SL3(R), Q Borel.

13/18



Example: TS?

G acts naturally and symplectically on
the manifold X ~ TS? of oriented lines
(a.k.a. light rays) in R>.

14/18



S S Euclid’s group G = {g = (§ ¢) : 39
Souriau
Prequantization

J G acts naturally and symplectically on
“ the manifold X ~ TS? of oriented lines
Classical (a.k.a. light rays) in R3.

Quantum
Nilpotent
Reductive

E(3)

14/18



S S Euclid’s group G = {g = (§ ¢) : 39

Souriau

Prequantization

Quantization?

G acts naturally and symplectically on
“oe the manifold X ~ TS? of oriented lines

Ce (a.k.a. light rays) in R3. 2-formy, s:
Quantum

Nilpotent o =k d(u, dr) + s Areag.
Reductive

E3)

14/18



S S Euclid’s group G = {g = (§ ¢) : 39
Souriau
Prequantization

Quantization?

G acts naturally and symplectically on
“oe the manifold X ~ TS? of oriented lines

ce (a.k.a. light rays) in R3. 2-formy, s:
Quantum

Nilpotent W= k d(’u,, d’r‘) + s Areasz.
Reductive

@) The moment map

Bu,r) = (r X k]::L—'— su)

makes X into a coadjoint orbit of G.
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of the reduced Maxwell equations

E(3)

divF = 0, curl F = kF,

with vector field G-action (gF)(r) = AF(A~!(r — ).
Cyclic vector: the textbook “plane wave” F(r) = e ¥ (e; — iey).
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