Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic Mackey Theory*

François Ziegler (Georgia Southern)

Shanghai Jiao Tong University May 17, 2018

Abstract: Guillemin & Sternberg used symplectic induction to give a "Mackey-Wigner" description of Hamiltonian G-spaces when G has a *normal abelian semidirect factor* N. I will describe how this generalizes to a full "Mackey" description (and classification) valid for *arbitrary normal* subgroups N, and explain why this is best done in the setting of *prequantum* (contact) G-spaces.

^{*}http://arxiv.org/abs/1410.7950

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Berna

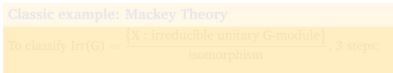
Imprimitivit

Mackey theory

Contact imprimitivit Let G be a group and N a normal subgroup, so that

$$1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.



Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Berna

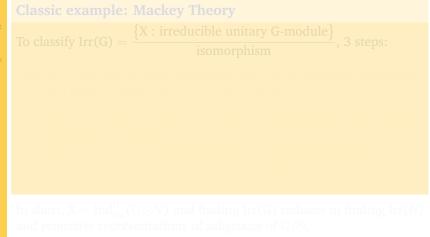
Imprimitivit

Mackey theory

Contact imprimitivit Let G be a group and N a normal subgroup, so that

$$1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.



Motivation

Symplectic induction

Mackey-Wigner

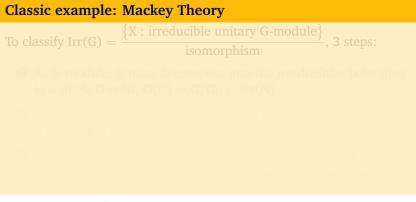
Kirillov-Berna Imprimitivity

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.



Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

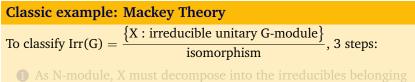
Imprimitivi

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.



As N-module, X must decompose into the irreducibles belonging to a single G-orbit, $G(U) = G/G_U \subset Irr(N)$.

D Then $X = Ind_{G_U}^G Y$,

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:

As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.

2 Then $X = Ind_{G_U}^G Y$,

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \ \ \, } N \xrightarrow{\qquad \ \ \, } G \xrightarrow{\qquad \ \ \, } G \xrightarrow{\qquad \ \ \, } G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:

• As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.

2 Then $X = Ind_{G_U}^G Y$,

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \bigvee } \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} G \xrightarrow{} G/N \xrightarrow{} 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:

- As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.
- 2 Then $X = Ind_{G_U}^G Y$, where $Y \in Irr(G_U)$ is N-primary (: as N-module it involves U alone).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \bigvee } \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} G \xrightarrow{} G/N \xrightarrow{} 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

- To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:
 - **1** As N-module, X must decompose into the irreducibles belonging to a *single* G-orbit, $G(U) = G/G_U \subset Irr(N)$.
 - 2 Then $X = Ind_{G_U}^G Y$, where $Y \in Irr(G_U)$ is N-primary (: as N-module it involves U alone).

3 Then $Y = U \otimes V$, with N-action: (given) \otimes (trivial)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \bigvee } \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} G \xrightarrow{} G/N \xrightarrow{} 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

- To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:
 - **1** As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.
 - 2 Then $X = Ind_{G_U}^G Y$, where $Y \in Irr(G_U)$ is N-primary (: as N-module it involves U alone).
 - 3 Then $Y = U \otimes V$, with N-action: (given) \otimes (trivial) G_U-action: (projective) \otimes (projective)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \ \ \, } N \xrightarrow{\qquad \ \ \, } G \xrightarrow{\qquad \ \ \, } G \xrightarrow{\qquad \ \ \, } G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

- To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:
 - **1** As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.
 - 2 Then $X = Ind_{G_U}^G Y$, where $Y \in Irr(G_U)$ is N-primary (: as N-module it involves U alone).
 - **3** Then $Y = U \otimes V$, with N-action: (given) \otimes (trivial)

 G_{U} -action: (projective) \otimes (projective).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \bigvee } \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} \underset{G}{\overset{U^*}{\underset{G}{\longrightarrow}}} G \xrightarrow{} G/N \xrightarrow{} 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

- To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:
 - **1** As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.
 - 2 Then $X = Ind_{G_U}^G Y$, where $Y \in Irr(G_U)$ is N-primary (: as N-module it involves U alone).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity Let G be a group and N a normal subgroup, so that

$$1 \xrightarrow{\qquad \ \ \, } N \xrightarrow{\qquad \ \ \, } G \xrightarrow{\qquad \ \ \, } G \xrightarrow{\qquad \ \ \, } G/N \longrightarrow 1.$$

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

- To classify $Irr(G) = \frac{\{X : irreducible unitary G-module\}}{isomorphism}$, 3 steps:
 - **1** As N-module, X must decompose into the irreducibles belonging to a *single* G-*orbit*, $G(U) = G/G_U \subset Irr(N)$.
 - 2 Then $X = Ind_{G_U}^G Y$, where $Y \in Irr(G_U)$ is N-primary (: as N-module it involves U alone).
 - 3 Then $Y = U \otimes V$, with N-action: (given) \otimes (trivial) G_U-action: (projective) \otimes (projective).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity

Contact imprimitivity

Symplectic induction (G: Lie group)

Given a closed subgroup $H \subset G$ and a hamiltonian H-space (Y, τ, Ψ) , Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

 $(\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}} \operatorname{Y}, \sigma_{\operatorname{ind}}, \Phi_{\operatorname{ind}})$

as follows:

Endow M := T*G × Y with the 2-form ω = dθ + τ, θ = "(p, dq)".
Let H act on M by h(p, y) = (ph⁻¹, h(y)).
This has moment map ψ(p, y) = Ψ(y) - q⁻¹p₁, (p ∈ T_q^{*}G).
Define Ind₁⁽¹⁾ X := ψ⁻¹(0)/H. (Marsden-Weinstein subquotient).
The G-action g(p, y) = (gp, y) and moment map φ(p, y) = pq⁻¹ pass to the quotient; whence the claimed G-space structure.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic induction (G: Lie group)

Given a closed subgroup $H \subset G$ and a hamiltonian H-space (Y, τ, Ψ) , Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space $(Ind_{U}^{G}Y, \sigma_{ind}, \Phi_{ind})$

as follows:

- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (\langle p, dq \rangle)^*$.
- 2 Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- 3 This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in \mathrm{T}_q^*\mathrm{G}).$

Define $\operatorname{Ind}_{H}^{G} Y := \psi^{-1}(0)/H$ (Marsden-Weinstein subquotient).

Solution The G-action g(p, y) = (gp, y) and moment map $\varphi(p, y) = pq^{-1}$ pass to the quotient; whence the claimed G-space structure.

Motivation

Symplectic induction

Mackey-Wigner

- Kirillov-Bernat
- Imprimitivity
- Mackey theory
- Contact imprimitivity

Symplectic induction (G: Lie group)

Given a closed subgroup $H \subset G$ and a hamiltonian H-space (Y, τ, Ψ) , Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

 $(\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}}\operatorname{Y}, \sigma_{\operatorname{ind}}, \Phi_{\operatorname{ind}})$

as follows:

- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)^*$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- 3 This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in \mathrm{T}_q^*\mathrm{G}).$

4 Define $Ind_{H}^{G}Y := \psi^{-1}(0)/H$ (Marsden-Weinstein subquotient).

S The G-action g(p, y) = (gp, y) and moment map φ(p, y) = pq⁻¹ pass to the quotient; whence the claimed G-space structure.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic induction (G: Lie group)

Given a closed subgroup $H \subset G$ and a hamiltonian H-space (Y, τ, Ψ) , Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

 $(\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}}\operatorname{Y}, \sigma_{\operatorname{ind}}, \Phi_{\operatorname{ind}})$

as follows:

- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)^*$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- **3** This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}}$ $(p \in T_q^*G)$.

4 Define $\operatorname{Ind}_{H}^{G} Y := \psi^{-1}(0)/H$ (Marsden-Weinstein subquotient).

5 The G-action g(p, y) = (gp, y) and moment map φ(p, y) = pq⁻¹ pass to the quotient; whence the claimed G-space structure.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic induction (G: Lie group)

Given a closed subgroup $H \subset G$ and a hamiltonian H-space (Y, τ, Ψ) , Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

 $(\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}}\operatorname{Y}, \sigma_{\operatorname{ind}}, \Phi_{\operatorname{ind}})$

as follows:

- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)^*$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- **3** This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in T_q^*G)$.
- $\label{eq:constant} \mbox{ Optime Ind}_{H}^{G} Y\!:=\psi^{-1}(0)/H \quad \mbox{ (Marsden-Weinstein subquotient). }$
- **5** The G-action g(p, y) = (gp, y) and moment map $\varphi(p, y) = pq^{-1}$ pass to the quotient; whence the claimed G-space structure.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic induction (G: Lie group)

Given a closed subgroup $H \subset G$ and a hamiltonian H-space (Y, τ, Ψ) , Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

 $(\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}}\operatorname{Y}, \sigma_{\operatorname{ind}}, \Phi_{\operatorname{ind}})$

as follows:

- **1** Endow $M := T^*G \times Y$ with the 2-form $\omega = d\theta + \tau$, $\theta = (p, dq)^*$.
- **2** Let H act on M by $h(p, y) = (ph^{-1}, h(y))$.
- **3** This has moment map $\psi(p, y) = \Psi(y) q^{-1}p_{|\mathfrak{h}|}$ $(p \in T_q^*G)$.
- 5 The G-action g(p, y) = (gp, y) and moment map φ(p, y) = pq⁻¹ pass to the quotient; whence the claimed G-space structure.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic induction (G: Lie group)

Proposition (Elementary properties)

 $\mathbf{D} \operatorname{dim}(\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}} Y) = 2 \operatorname{dim}(\operatorname{G}/\operatorname{H}) + \operatorname{dim}(Y).$

 $\operatorname{M} \operatorname{meets} \operatorname{Im}(\Phi_{\operatorname{ind}}) \Leftrightarrow \operatorname{M}_{|\mathfrak{h}} \operatorname{meets} \operatorname{Im}(\Psi) \quad (\mathfrak{M} \in \mathfrak{g}^*/\mathsf{G}) \text{ (Frobenius).}$

and a majoration of the second prior products of the second prior of t

(agaid) (quargetas haada analasan ali) - Y ghal ghi

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity

Symplectic induction (G: Lie group)

Proposition (Elementary properties)

1 dim(Ind_H^G Y) = $2 \dim(G/H) + \dim(Y)$.

2 M meets $\operatorname{Im}(\Phi_{\operatorname{ind}}) \Leftrightarrow M_{|\mathfrak{h}}$ meets $\operatorname{Im}(\Psi)$ ($M \in \mathfrak{g}^*/G$) (Frobenius).

 $\operatorname{Ind}_{H}^{G} Y$ is a coadjoint orbit $\Rightarrow Y$ is a coadjoint orbit.

 $\operatorname{Ind}_{K}^{G}\operatorname{Ind}_{H}^{K}Y = \operatorname{Ind}_{H}^{G}Y$ (K: intermediate closed subgroup) (Stages).

Motivation

Symplectic induction

- Mackey-Wigner
- Kirillov-Bernat
- Imprimitivity
- Mackey theory
- Contact imprimitivity

Symplectic induction (G: Lie group)

Proposition (Elementary properties)

- $(Ind_{H}^{G} Y) = 2 \dim(G/H) + \dim(Y).$
- 2 M meets $\operatorname{Im}(\Phi_{\operatorname{ind}}) \Leftrightarrow M_{|\mathfrak{h}}$ meets $\operatorname{Im}(\Psi) \quad (M \in \mathfrak{g}^*/G)$ (Frobenius).
 - 3) $\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}}\operatorname{Y}$ is homogeneous \Rightarrow Y is homogeneous.
 - Ind^G_H Y is a coadjoint orbit \Rightarrow Y is a coadjoint orbit.
 - Ind^G_K Ind^K_H Y = Ind^G_H Y (K: intermediate closed subgroup) (Stages).

Motivation

Symplectic induction

- Mackey-Wigner
- Kirillov-Bernat
- Imprimitivity
- Mackey theory
- Contact imprimitivity

Symplectic induction (G: Lie group)

Proposition (Elementary properties)

- $(Ind_H^G Y) = 2 \dim(G/H) + \dim(Y).$
- 2 M meets $Im(\Phi_{ind}) \Leftrightarrow M_{|\mathfrak{h}}$ meets $Im(\Psi) \quad (M \in \mathfrak{g}^*/G)$ (Frobenius).
- **3** $Ind_{H}^{G} Y$ is homogeneous $\Rightarrow Y$ is homogeneous.
- 4 $\operatorname{Ind}_{\operatorname{H}}^{\operatorname{G}} Y$ is a coadjoint orbit \Rightarrow Y is a coadjoint orbit.
- **5** $\operatorname{Ind}_{K}^{G}\operatorname{Ind}_{H}^{K}Y = \operatorname{Ind}_{H}^{G}Y$ (K: *intermediate closed subgroup*) (*Stages*).

Motivation

Symplectic induction

- Mackey-Wigner
- Kirillov-Bernat
- Imprimitivit
- Mackey theory
- Contact imprimitivity

Symplectic induction (G: Lie group)

Proposition (Elementary properties)

- $(Ind_H^G Y) = 2 \dim(G/H) + \dim(Y).$
- 2 M meets $Im(\Phi_{ind}) \Leftrightarrow M_{|\mathfrak{h}}$ meets $Im(\Psi) \quad (M \in \mathfrak{g}^*/G)$ (Frobenius).
- **3** $Ind_{H}^{G} Y$ is homogeneous $\Rightarrow Y$ is homogeneous.
- $\ \ \, {\rm Ind}^G_H \, Y \ is \ a \ coadjoint \ orbit \Rightarrow Y \ is \ a \ coadjoint \ orbit.$

5 $\operatorname{Ind}_{K}^{G} \operatorname{Ind}_{H}^{K} Y = \operatorname{Ind}_{H}^{G} Y$ (K: *intermediate closed subgroup*) (*Stages*).

Motivation

Symplectic induction

- Mackey-Wigner
- Kirillov-Bernat
- Imprimitivity
- Mackey theory
- Contact imprimitivity

Symplectic induction (G: Lie group)

Proposition (Elementary properties)

- $1 \dim(\operatorname{Ind}_{H}^{G} Y) = 2\dim(G/H) + \dim(Y).$
- 2 M meets $\operatorname{Im}(\Phi_{\operatorname{ind}}) \Leftrightarrow M_{|\mathfrak{h}}$ meets $\operatorname{Im}(\Psi) \quad (M \in \mathfrak{g}^*/G)$ (Frobenius).
- **3** $Ind_{H}^{G} Y$ is homogeneous $\Rightarrow Y$ is homogeneous.
- $\ \ \, {\rm Ind}^G_H \, Y \ is \ a \ coadjoint \ orbit \Rightarrow Y \ is \ a \ coadjoint \ orbit.$
- **5** $Ind_{K}^{G} Ind_{H}^{K} Y = Ind_{H}^{G} Y$ (K: *intermediate closed subgroup*) (Stages).

Symplectic Mackey-Wigner

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Berna Imprimitivity Mackey theor

imprimitivity

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

Symplectic Mackey-Wigner

Motivation

Symplection induction

Mackey-Wigner

Imprimitivity Mackey theor

Contact imprimitivit

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in n^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

Symplectic Mackey-Wigner

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Berna Imprimitivity Mackey theor

imprimitivity

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

Symplectic Mackey-Wigner

Motivatior

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N\subset G$ be a closed connected normal **abelian** subgroup. Pick $u\in \mathfrak{n}^*$ and write $H=G_u.$ Then $Y\mapsto X=Ind_H^G\,Y$ defines a bijection between

(a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;

b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

he inverse map sends X = G(x) to $Y = H(x_{|b})$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

he inverse map sends X = G(x) to $Y = H(x_{|h})$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{h}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

(1) $\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

(1) $\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h})$. Indeed: $\langle \mathfrak{n}(x), Z \rangle = \langle x, [\mathfrak{n}, Z] \rangle = \langle u, [\mathfrak{n}, Z] \rangle = \langle Z(u), \mathfrak{n} \rangle$ shows $\operatorname{ann}(\mathfrak{n}(x)) = \mathfrak{g}_u = \mathfrak{h}$.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

(1) $\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

```
(1) \mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).
```

(2) N(x) = x + ann(h).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

- (1) $\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).$
- (2) N(x) = x + ann(h). Indeed, for Z \in n: $\langle \exp(Z)(x), Z' \rangle = \langle x, \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \operatorname{ad}(Z)^n (Z') \rangle$ = $\langle x, Z' - [Z, Z'] \rangle = \langle x + Z(x), Z' \rangle$. So N(x) $\supset x + \mathfrak{n}(x)$.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

```
(1) \mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).
```

(2) N(x) = x + ann(h).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

(1) $\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).$

(2)
$$N(x) = x + \operatorname{ann}(\mathfrak{h}) = \eta^{-1}(x_{|\mathfrak{h}})$$
, where $\eta : \mathfrak{g}^* \to \mathfrak{h}^*$.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

(1)
$$\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).$$

- (2) $N(x) = x + \operatorname{ann}(\mathfrak{h}) = \eta^{-1}(x_{|\mathfrak{h}})$, where $\eta : \mathfrak{g}^* \to \mathfrak{h}^*$.
- (3) $H(x) = \eta^{-1}(Y)$.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact imprimitivity

Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let $N \subset G$ be a closed connected normal **abelian** subgroup. Pick $u \in \mathfrak{n}^*$ and write $H = G_u$. Then $Y \mapsto X = Ind_H^G Y$ defines a bijection between

- (a) coadjoint orbits X of G such that $X_{|n} \supset \{u\}$;
- (b) coadjoint orbits Y of H such that $Y_{|n} = \{u\}$.

The inverse map sends X = G(x) to $Y = H(x_{|\mathfrak{h}}) \cong (x \mapsto x_{|\mathfrak{n}})^{-1}(u)/N$ $(x_{|\mathfrak{n}} = u)$. Note that Y is a homogeneous symplectic manifold of H/N.

Crux of proof. Suppose $Y = H(x_{|\mathfrak{h}})$. Clearly $Y_{|\mathfrak{n}} = \{u\}$. Want: Φ_{ind} 1-1 onto X. Now, we have

(1)
$$\mathfrak{n}(x) = \operatorname{ann}(\mathfrak{h}).$$

- (2) $N(x) = x + \operatorname{ann}(\mathfrak{h}) = \eta^{-1}(x_{|\mathfrak{h}})$, where $\eta : \mathfrak{g}^* \to \mathfrak{h}^*$.
- (3) $H(x) = \eta^{-1}(Y)$.

So $M_{|\mathfrak{h}}$ meets $Y \Rightarrow M$ meets X, and $Im(\Phi_{ind}) = X$ by Frobenius.

Motivation

Symplecti induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Conside

$$\mathrm{G}=\left\{g=egin{pmatrix}\mathrm{L}&\mathrm{C}\0&1\end{pmatrix}\colon egin{pmatrix}\mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\C\in\mathbf{R}^{3,1}\end{array}
ight\},$$

semidirect product of $N = \mathbb{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0) Then \mathfrak{n}^* identifies with $\mathbb{R}^{3,1}$ where G acts by g(P) = LP. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

Motivatio

Symplecti induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\}$$
 ,

semidirect product of $N = \mathbb{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0) Then \mathfrak{n}^* identifies with $\mathbb{R}^{3,1}$ where G acts by $g(\mathbb{P}) = \mathbb{LP}$. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

Motivatio

Symplecti induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{g=egin{pmatrix}\mathrm{L}&\mathrm{C}\0&1\end{pmatrix}\colon egin{pmatrix}\mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\C\in\mathbf{R}^{3,1}\end{array}
ight\}$$

semidirect product of $N = R^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then n^{*} identifies with $R^{3,1}$ where G acts by g(P) = LP. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{ln} \ni u$ and Y, thus:

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\}$$

semidirect product of N = $\mathbb{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbb{R}^{3,1}$ where G acts by g(P) = LP. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

a) X_{1n} is half a timelike hyperboloid and Y a coadjoint orbit of SO()
 b) X_{1n} is a half-cone and Y a coadjoint orbit of B(2)

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\},$$

semidirect product of $N = \mathbb{R}^{3,1} (L = 1)$ with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbb{R}^{3,1}$ where G acts by g(P) = LP. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\},$$

semidirect product of N = $\mathbf{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbf{R}^{3,1}$ where G acts by $g(\mathbf{P}) = \mathbf{LP}$. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

(a) $X_{|n|}$ is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) $X_{|n|}$ is a half-cone and Y a coadjoint orbit of **E**(2)

(c) $X_{|n|}$ is a spacelike hyperboloid and Y a coadjoint orbit of **SL**(2, **R**)

(d) $X_{|n|}$ is the origin and Y(=X) a coadjoint orbit of $SO(3,1)^{\circ}$.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\},$$

semidirect product of N = $\mathbf{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbf{R}^{3,1}$ where G acts by $g(\mathbf{P}) = \mathbf{LP}$. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

(a) $X_{|n|}$ is half a timelike hyperboloid and Y a coadjoint orbit of ${f SO}(3)$

(b) $X_{|\mathfrak{n}}$ is a half-cone and Y a coadjoint orbit of E(2)

(c) $X_{|n|}$ is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) $X_{|n|}$ is the origin and Y(=X) a coadjoint orbit of **SO**(3, 1)°.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\}$$
 ,

semidirect product of N = $\mathbf{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbf{R}^{3,1}$ where G acts by $g(\mathbf{P}) = \mathbf{LP}$. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

(a) $X_{|n|}$ is half a timelike hyperboloid and Y a coadjoint orbit of ${f SO}(3)$

- (b) $X_{|n|}$ is a half-cone and Y a coadjoint orbit of E(2)
- (c) $X_{|n|}$ is a spacelike hyperboloid and Y a coadjoint orbit of $SL(2, \mathbf{R})$

(d) $X_{|n|}$ is the origin and Y(=X) a coadjoint orbit of **SO**(3, 1)°.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\},$$

semidirect product of N = $\mathbf{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbf{R}^{3,1}$ where G acts by $g(\mathbf{P}) = \mathbf{LP}$. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

(a) $X_{\mid \mathfrak{n}}$ is half a timelike hyperboloid and Y a coadjoint orbit of $\boldsymbol{SO(3)}$

- (b) $X_{|\mathfrak{n}}$ is a half-cone and Y a coadjoint orbit of E(2)
- (c) $X_{|n|}$ is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)
- (d) $X_{|n|}$ is the origin and Y(=X) a coadjoint orbit of **SO**(3, 1)^o.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

$$\mathrm{G}=\left\{ g=egin{pmatrix} \mathrm{L}&\mathrm{C}\ 0&1 \end{pmatrix}\colon egin{pmatrix} \mathrm{L}\in\mathbf{SO}(3,1)^{\mathrm{o}}\ \mathrm{C}\in\mathbf{R}^{3,1} \end{array}
ight\},$$

semidirect product of N = $\mathbf{R}^{3,1}$ (L = 1) with the Lorentz group (C = 0). Then \mathfrak{n}^* identifies with $\mathbf{R}^{3,1}$ where G acts by $g(\mathbf{P}) = \mathbf{LP}$. The theorem classifies the coadjoint orbits X of G in terms of the possible orbits $X_{|\mathfrak{n}} \ni u$ and Y, thus:

(a) $X_{|n|}$ is half a timelike hyperboloid and Y a coadjoint orbit of ${f SO}(3)$

- (b) $X_{|\mathfrak{n}}$ is a half-cone and Y a coadjoint orbit of E(2)
- (c) $X_{|n|}$ is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)
- (d) $X_{|n|}$ is the origin and Y(=X) a coadjoint orbit of **SO**(3, 1)°.

Application: Symplectic Kirillov-Bernat theory

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory Contact

imprimitivity

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

 $X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $\mathfrak{a}_{|\mathfrak{n}|}$ and $X_1 = G_1(\mathfrak{a}_{|\mathfrak{g}|})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_1 such that

 $\mathrm{X} = \mathrm{Ind}_{\mathrm{G}_1}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}_{i-1}} \mathrm{X}_i = \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}} \mathrm{X}_i$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory Contact

imprimitivity

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

 $X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$

Sketch of proof. A lemma of Takenouchi (1957) ensures that g/ann(X) admits an abelian ideal which is not central. Its preimage n in g is an X-abelian ideal which is not X-central. So the theorem gives $X = Ind_{G_1}^G X_1$ where G_1 is the stabilizer of α_{ln} and $X_1 = G_1(\alpha_{ln})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_i such that

 $\mathbf{X} = \mathrm{Ind}_{\mathrm{G}_1}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}_{i-1}} \mathbf{X}_i = \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}} \mathbf{X}_i$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$$
 (*)

ontact nprimitivity **Sketch of proof.** A lemma of Takenouchi (1957) ensures that g/ann(X) admits an abelian ideal which is not central. Its preimage n in g is an X-abelian ideal which is not X-central. So the theorem gives $X = Ind_{C_1}^G X_1$ where G_1 is the stabilizer of z_{1n} and $X_1 = G_1(z_{1g_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_1 such that

 $\mathrm{X} = \mathrm{Ind}_{\mathrm{G}_1}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}_{i-1}} \mathrm{X}_i = \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}} \mathrm{X}_i$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$$
 (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|\mathfrak{n}|}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_1 such that

$$\mathrm{X} = \mathrm{Ind}_{\mathrm{G}_1}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}_{i-1}} \mathrm{X}_i = \mathrm{Ind}_{\mathrm{G}_i}^{\mathrm{G}} \mathrm{X}_i$$

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$$
(*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\mathfrak{ann}(X)$ admits an abelian ideal which is not central. Its preimage n in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $\mathfrak{a}_{|n|}$ and $X_1 = G_1(\mathfrak{a}_{|n|})$. One checks that G_1 is again exponential and of smaller dimension than G_2 .

 $\mathbf{X} = \mathbf{Ind}_{\mathsf{G}_1}^{\mathsf{G}} \cdots \mathbf{Ind}_{\mathsf{G}_i}^{\mathsf{G}_{i-1}} \mathbf{X}_i = \mathbf{Ind}_{\mathsf{G}_i}^{\mathsf{G}} \mathbf{X}_i$

Motivation

Symplecti induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$$
(*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|n|}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_1 such that

 $\mathbf{X} = \mathrm{Ind}_{\mathrm{G}_{1}}^{\mathrm{G}} \cdots \mathrm{Ind}_{\mathrm{G}_{i}}^{\mathrm{G}_{i-1}} \mathbf{X}_{i} = \mathrm{Ind}_{\mathrm{G}_{i}}^{\mathrm{G}} \mathbf{X}_{i}$

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = \operatorname{Ind}_{H}^{G}\{x_{|\mathfrak{h}}\}.$$
 (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $\mathfrak{x}_{|\mathfrak{n}}$ and $X_1 = G_1(\mathfrak{x}_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_1 such that

$$X = Ind_{G_1}^G \cdots Ind_{G_i}^{G_{i-1}} X_i = Ind_{G_i}^G X_i$$

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = Ind_{H}^{G} \{ x_{|\mathfrak{h}} \}.$$
(*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|\mathfrak{n}}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_i such that

$$X = Ind_{G_1}^{G} \cdots Ind_{G_i}^{G_{i-1}} X_i = Ind_{G_i}^{G} X_i$$

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = \operatorname{Ind}_{H}^{G}\{x_{|\mathfrak{h}}\}.$$
 (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|\mathfrak{n}}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_i such that

$$X = Ind_{G_1}^G \cdots Ind_{G_i}^{G_{i-1}} X_i = Ind_{G_i}^G X_i$$

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = \operatorname{Ind}_{H}^{G}\{x_{|\mathfrak{h}}\}.$$
 (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|\mathfrak{n}}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_i such that

$$X = Ind_{G_1}^G \cdots Ind_{G_i}^{G_{i-1}} X_i = Ind_{G_i}^G X_i$$

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = \operatorname{Ind}_{H}^{G}\{x_{|\mathfrak{h}}\}.$$
 (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|\mathfrak{n}}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_i such that

$$X = Ind_{G_1}^G \cdots Ind_{G_i}^{G_{i-1}} X_i = Ind_{G_i}^G X_i$$

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity Mackey theory

Contact imprimitivit

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)

Let G be an exponential Lie group (: exp is a diffeomorphism $\mathfrak{g} \to G$) and let X = G(x) be a coadjoint orbit of G. Then X is monomial, i.e. G admits a closed connected subgroup H, such that

$$X = \operatorname{Ind}_{H}^{G}\{x_{|\mathfrak{h}}\}.$$
 (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that $\mathfrak{g}/\operatorname{ann}(X)$ admits an abelian ideal which is not central. Its preimage \mathfrak{n} in \mathfrak{g} is an X-abelian ideal which is not X-central. So the theorem gives $X = \operatorname{Ind}_{G_1}^G X_1$ where G_1 is the stabilizer of $x_{|\mathfrak{n}}$ and $X_1 = G_1(x_{|\mathfrak{g}_1})$. One checks that G_1 is again exponential and of smaller dimension than G. So we can iterate to obtain decreasing G_i such that

$$X = Ind_{G_1}^G \cdots Ind_{G_i}^{G_{i-1}} X_i = Ind_{G_i}^G X_i$$

Imprimitivity (motivation)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

Definition

A system of imprimitivity for X is a G-invariant, commutative \mathbb{T} -subalgebra $A \subset End(X)$.

Its base is its Gelfand spectrum $\mathbb{B} = \{nonzero \ laboration philometry of pointwise convergence.$

Imprimitivity (motivation)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

Definition

A *system of imprimitivity* for X is a G-invariant, commutative C*-subalgebra A ⊂ End(X).

Its *base* is its Gelfand spectrum $B = \{nonzero * homomorphisms b : A \rightarrow C\}$, with topology of pointwise convergence.

The base, B, is a locally compact G-space: $g_{\rm H}(b)(a) = b(g_{\rm X}^{-1}ag_{\rm X})$

Imprimitivity (motivation)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

- A *system of imprimitivity* for X is a G-invariant, commutative C*-subalgebra $A \subset End(X)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_X^{-1}ag_X)$
- The system, A, is called *transitive* if G acts transitively on B.

Imprimitivity (motivation)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

- A *system of imprimitivity* for X is a G-invariant, commutative C^* -subalgebra $A \subset End(X)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_X^{-1}ag_X)$.
- The system, A, is called *transitive* if G acts transitively on B.

Imprimitivity (motivation)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

- A *system of imprimitivity* for X is a G-invariant, commutative C^* -subalgebra $A \subset End(X)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_X^{-1}ag_X)$.
- The system, A, is called *transitive* if G acts transitively on B.

Imprimitivity (motivation)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

- A *system of imprimitivity* for X is a G-invariant, commutative C^* -subalgebra $A \subset End(X)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_X^{-1}ag_X)$.
- The system, A, is called *transitive* if G acts transitively on B.

Motivation

Symplectic induction

Mackey-Wigner

- Kirillov-Bernat
- Imprimitivity
- Mackey theory

Contact imprimitivit

Imprimitivity (motivation)

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

Definition

- A *system of imprimitivity* for X is a G-invariant, commutative C^* -subalgebra $A \subset End(X)$.
- Its *base* is its Gelfand spectrum B = {nonzero *-homomorphisms b : A → C}, with topology of pointwise convergence.
- The base, B, is a locally compact **G**-space: $g_B(b)(a) = b(g_X^{-1}ag_X)$.
- The system, A, is called *transitive* if G acts transitively on B.

Remark: The *Gelfand transform* $a \mapsto \hat{a}$, defined by $\hat{a}(b) = b(a)$, is an isomorphism $A \to C_0(B)$. Its inverse E is a *-representation of $C_0(B)$ in X such that

$$\mathrm{E}(f\circ g_{\mathrm{B}}^{-1})=g_{\mathrm{X}}\mathrm{E}(f)g_{\mathrm{X}}^{-1},$$

i.e. a "system of imprimitivity" in the original Mackey-Blattner sense.

Imprimitivity (motivation)

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
 - $X = Ind_H^G Y$ for some unitary H-module Y (suitably unique).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Imprimitivity (motivation)

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for some unitary H-module Y (suitably unique).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Imprimitivity (motivation)

Iotivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H ($H = G_b$ say);
- $X = Ind_{H}^{G} Y$ for some unitary H-module Y (suitably unique).

Explanation (case G/H admits a G-invariant measure):

Imprimitivity (motivation)

1 I

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

- X admits a transitive system of imprimitivity with base B = G/H ($H = G_b$ say);
- $X = Ind_{H}^{G} Y$ for some unitary H-module Y (suitably unique).

Explanation (case G/H admits a G-invariant measure):

- \Downarrow : Harder!

Symplectic imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

Definition

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit system of imprimitivity for X is a G-invariant, commutative a subalgebra $f \in G^{\infty}(X)$, such that the hamiltonian vector field ag f is complete for all $f \in f$.

Symplectic imprimitivity

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

Definition

A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra $\mathfrak{f} \subset \mathbb{C}^{\infty}(X)$, such that the hamiltonian vector field drag f is complete for all $f \in \mathfrak{f}$.

Its *base* is the image B of the "moment map" $\pi : X \to f^*$, $(\pi(x), f) = f(x)$. Each $f \in f$ descends to a function f on B. The base, B, is a G-subset of f^* : $(q_0(b), f) = (b, f \circ q_0)$.

The system, f, is called transitive if $3^{(0)}$ G acts transitively on Bir 2°) $n : (X \rightarrow B)$ is C⁽ⁿ⁾ for the homogeneous space structure on B.

Motivation

Symplectic induction

- Mackey-Wigner
- Kirillov-Bernat
- Imprimitivity
- Mackey theory
- Contact imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

Definition

 A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.

- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C[∞] for the homogeneous space structure on B.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

Definition

 A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.

- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function f on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C^{∞} for the homogeneous space structure on B.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

Definition

 A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.

- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function f on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C^{∞} for the homogeneous space structure on B.

Motivation

Symplectic induction Definition

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

A *system of imprimitivity* for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.

- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_{\mathrm{B}}(b), f \rangle = \langle b, f \circ g_{\mathrm{X}} \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C[∞] for the homogeneous space structure on B.

Motivation

Symplectic induction Definition

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Let (X, σ, Φ) be a hamiltonian G-space.

A system of imprimitivity for X is a G-invariant, commutative Lie subalgebra f ⊂ C[∞](X), such that the hamiltonian vector field drag f is complete for all f ∈ f.

- Its *base* is the image B of the "moment map" $\pi : X \to \mathfrak{f}^*$, $\langle \pi(x), f \rangle = f(x)$. Each $f \in \mathfrak{f}$ descends to a function \dot{f} on B.
- The base, B, is a **G**-subset of \mathfrak{f}^* : $\langle g_B(b), f \rangle = \langle b, f \circ g_X \rangle$.
- The system, \mathfrak{f} , is called *transitive* if 1°) G acts transitively on B, 2°) $\pi : X \to B$ is C^{∞} for the homogeneous space structure on B.

Explanation: $\mathcal{F} := (\mathfrak{f} \text{ as an additive group) acts on X by <math>f_X = e^{\operatorname{drag} f}$ and π is *formally* a moment map for this action: $\operatorname{drag}\langle \pi(\cdot), f \rangle = \operatorname{drag} f$. Stabilizers G_b are *closed* so B's homogeneous structure is well-defined.

Symplectic imprimitivity theorem

Theorem (Z.)

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity The following are equivalent for a hamiltonian G-space (X, σ, Φ) :

 X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);

• $X = Ind_H^G Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, σ, Φ) :

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, $\sigma, \Phi)$:

- X admits a transitive system of imprimitivity with base B = G/H ($H = G_b$ say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, $\sigma, \Phi)$:

- X admits a transitive system of imprimitivity with base B = G/H ($H = G_b$ say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↑: Recall, $Ind_{H}^{G}Y = (T^{*}G \times Y)//H$. Now a G-equivariant projection

 $\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

 $\mathfrak{f}_{ind}:=\pi^*_{ind}(C^\infty(G/H))$

is a transitive system of imprimitivity on $Ind_H^G Y$ with base G/H.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, $\sigma, \Phi)$:

- X admits a transitive system of imprimitivity with base B = G/H ($H = G_b$ say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↑: Recall, $Ind_H^G Y = (T^*G \times Y)//H$. Now a G-equivariant projection

 $\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

 $\mathfrak{f}_{ind}:=\pi_{ind}^*(C^\infty(G/H))$

is a transitive system of imprimitivity on $Ind_H^G Y$ with base G/H.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, $\sigma, \Phi)$:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↑: Recall, Ind^G_H Y = (T*G × Y)//H. Now a G-equivariant projection

$$\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

 $\mathfrak{f}_{ind}:=\pi_{ind}^*(C^\infty(G/H))$

is a transitive system of imprimitivity on $Ind_H^G Y$ with base G/H.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, $\sigma, \Phi)$:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↑: Recall, Ind^G_H Y = (T*G × Y)//H. Now a G-equivariant projection

$$\pi_{ind}:Ind_{H}^{G}\,Y\to G/H$$

arises by noting that the map $T^*G \times Y \to G/H$ sending $T^*_qG \times Y$ to qH is constant on H-orbits, hence passes to the (sub)quotient. Then one checks that

$$\mathfrak{f}_{ind} \mathrel{\mathop:}= \pi^*_{ind}(C^\infty(G/H))$$

is a transitive system of imprimitivity on $\text{Ind}_{H}^{G} Y$ with base G/H.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit

Symplectic imprimitivity theorem

Theorem (Z.)

The following are equivalent for a hamiltonian G-space (X, $\sigma, \Phi)$:

- X admits a transitive system of imprimitivity with base B = G/H (H = G_b say);
- $X = Ind_{H}^{G} Y$ for a hamiltonian H-space (Y, τ, Ψ) (suitably unique).

Explanation:

↓: Formally this is Mackey-Wigner applied to the group 𝔅 ⋊ G and abelian normal subgroup 𝔅. Explicitly Y is the "reduced space" π⁻¹(b)/𝔅. Proof subtler as 𝔅 need not be Lie, nor its action free or proper...

Motivation

- Symplectic induction
- Mackey-Wigner
- Kirillov-Bernat
- Imprimitivity
- Mackey theory
- Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and n by conjugation.
- G acts naturally on n* by contragredience.
- G respects the partition of n* into (coadjoint) N-orbits.
- So G acts in the orbit space n° /N; and we have a composition of a G-equivariant maps

$$\begin{array}{ccc} X & & & \\ & & & \\ & & \\ G & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (Χ, σ, Φ) onto some G-orbit B = G(U) = G/G_U in n*/N.

Little group step

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and $\mathfrak n$ by conjugation.
- G acts naturally on n* by contragredience.
- G respects the partition of n* into (coadjoint) N-orbits.
- So G acts in the orbit space n*/N, and we have a composition of G-equivariant maps

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ , Φ) onto some G-orbit B = G(U) = G/G_U in n*/N.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and $\mathfrak n$ by conjugation.
- G acts naturally on n^* by contragredience.
- G respects the partition of n* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$\begin{array}{ccc} X & & & \\ & & & \\ & &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ , Φ) onto some G-orbit B = G(U) = G/G_U in n*/N.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and n by conjugation.
- G acts naturally on n^* by contragredience.
- G respects the partition of n^* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$\begin{array}{cccc} X & & & \\ & & & \\ &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (Χ, σ, Φ) onto some G-orbit B = G(U) = G/G_U in n*/N.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and n by conjugation.
- G acts naturally on n* by contragredience.
- G respects the partition of n^* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$\begin{array}{cccc} X & & & \\ & & & \\ & & & \\ & & & \\ G & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ , Φ) onto some G-orbit B = G(U) = G/G_U in n*/N.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and $\mathfrak n$ by conjugation.
- G acts naturally on n^* by contragredience.
- G respects the partition of n^* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$\begin{array}{cccc} X & \longrightarrow & \mathfrak{g}^* & \longrightarrow & \mathfrak{n}^* & \longrightarrow & \mathfrak{n}^* / N. \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ , Φ) onto some G-orbit B = G(U) = G/G_U in n*/N.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and $\mathfrak n$ by conjugation.
- G acts naturally on n* by contragredience.
- G respects the partition of n^* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$X \xrightarrow{\Phi} \mathfrak{g}^* \xrightarrow{(\cdot)_{|\mathfrak{n}}} \mathfrak{g}^* \xrightarrow{N(\cdot)} \mathfrak{n}^* / N.$$

$$\overset{(*)}{\underset{G}{\hookrightarrow}} \mathfrak{g}^* \xrightarrow{(\cdot)_{|\mathfrak{n}}} \mathfrak{g}^* \xrightarrow{N(\cdot)} \mathfrak{g}^* / N.$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ , Φ) onto some G-orbit B = G(U) = G/G_U in n^*/N .

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and \mathfrak{n} by conjugation.
- G acts naturally on n* by contragredience.
- G respects the partition of n^* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$\begin{array}{cccc} X & & & \\ & & & \\ &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ , Φ) onto some G-orbit B = G(U) = G/G_U in n^*/N .

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

From now on, suppose $N \subset \mathsf{G}$ is a closed normal subgroup. Then

- G acts naturally on N and $\mathfrak n$ by conjugation.
- G acts naturally on n* by contragredience.
- G respects the partition of n* into (coadjoint) N-orbits.
- So G acts in the orbit space $\mathfrak{n}^*/N,$ and we have a composition of G-equivariant maps

$$\begin{array}{cccc} X & & & \\ & & & \\ &$$

Little group step

Hence this triviality (where G_U or G_U/N is known as the *little group*):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, σ, Φ) onto some G-orbit $B = G(U) = G/G_U$ in n^*/N .

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

heorem (Z.)

et $U\in \mathfrak{n}^*/N$ be an orbit such that $H:=G_U$ is closed in G. Then H ontains N, and $Y\mapsto X=Ind_H^G\,Y$ defines a bijection between

) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi({\sf X})_{|\mathfrak{n}} \supset {\sf U}$

) homogeneous hamiltonian H-spaces (Y, au, Ψ) such that Ψ (Y) $_{|\mathfrak{n}}=$ U

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}|}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $\mathsf{G}\ \Longleftrightarrow\ Y$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity **Expectation:** X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U \in \mathfrak{n}^*/N$ be an orbit such that $H := G_U$ is closed in G. Then H contains N, and $Y \mapsto X = Ind_H^G Y$ defines a bijection between (a) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi(X)_{|\mathfrak{n}} \supset U$ (b) homogeneous hamiltonian H-spaces (Y, τ, Ψ) such that $\Psi(Y)_{|\mathfrak{n}} = U$ The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $\mathsf{G} \iff \mathsf{Y}$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Induction step

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U \in \mathfrak{n}^*/N$ be an orbit such that $H := G_U$ is closed in G. Then H contains N, and $Y \mapsto X = Ind_H^G Y$ defines a bijection between

(a) homogeneous hamiltonian G-spaces (X,σ,Φ) such that $\Phi(X)_{|\mathfrak{n}}\supset U$

b) homogeneous hamiltonian H-spaces (Y, au, Ψ) such that $\Psi(Y)_{|\mathfrak{n}} = U$

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $\mathsf{G} \iff \mathsf{Y}$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Motivatio

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U \in \mathfrak{n}^*/N$ be an orbit such that $H := G_U$ is closed in G. Then H contains N, and $Y \mapsto X = Ind_H^G Y$ defines a bijection between

(a) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi(X)_{|\mathfrak{n}} \supset U$

b) homogeneous hamiltonian H-spaces (Y, τ, Ψ) such that $\Psi(Y)_{|n} = U$

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $G \iff Y$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory

Contact imprimitivity Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U\in \mathfrak{n}^*/N$ be an orbit such that $H:=G_U$ is closed in G. Then H contains N, and $Y\mapsto X=Ind_H^G\,Y$ defines a bijection between

(a) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi(X)_{|\mathfrak{n}} \supset U$

(b) homogeneous hamiltonian H-spaces (Y,τ,Ψ) such that $\Psi(Y)_{|\mathfrak{n}}=U$

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $G \iff Y$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Motivatio

Symplectic induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory

Contact imprimitivity

Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U\in \mathfrak{n}^*/N$ be an orbit such that $H:=G_U$ is closed in G. Then H contains N, and $Y\mapsto X=Ind_H^G\,Y$ defines a bijection between

(a) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi(X)_{|\mathfrak{n}} \supset U$

(b) homogeneous hamiltonian H-spaces (Y,τ,Ψ) such that $\Psi(Y)_{|\mathfrak{n}}=U$

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $G \iff Y$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory

Contact imprimitivity

Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U\in \mathfrak{n}^*/N$ be an orbit such that $H:=G_U$ is closed in G. Then H contains N, and $Y\mapsto X=Ind_H^G\,Y$ defines a bijection between

(a) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi(X)_{|\mathfrak{n}} \supset U$

(b) homogeneous hamiltonian H-spaces (Y,τ,Ψ) such that $\Psi(Y)_{|\mathfrak{n}}=U$

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $G \iff Y$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U -stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory

Contact

Expectation: X should now admit a system of imprimitivity based on B = G(U), and hence be induced. That's rewarded:

Theorem (Z.)

Let $U\in \mathfrak{n}^*/N$ be an orbit such that $H:=G_U$ is closed in G. Then H contains N, and $Y\mapsto X=Ind_H^G\,Y$ defines a bijection between

(a) homogeneous hamiltonian G-spaces (X, σ, Φ) such that $\Phi(X)_{|\mathfrak{n}} \supset U$

(b) homogeneous hamiltonian H-spaces (Y, τ, Ψ) such that $\Psi(Y)_{|n} = U$

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced space of X at U: the quotient of $\Phi(\cdot)_{|\mathfrak{n}}^{-1}(U)$ by its characteristic foliation. Moreover

X is a coadjoint orbit of $G \iff Y$ is a coadjoint orbit of H.

This reduces us to the *primary case*: Y sits above *one* (G_U-stable) N-orbit, $U \in (n^*/N)^{G_U}$.

Induction step

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity We are reduced to the *primary case*: a hamiltonian G_U-space (Y, τ, Ψ) uch that Ψ(Y)_{|n} is *one* N-orbit U ∈ (n*/N)^{G_U}. So now G_U acts on U:
this action is symplectic, but a moment ψ : U → g_U^{*} need not exist;
ψ exists on a certain cover Ū [⊥]→ U, but G_U need not act on Ū;
a certain cover Ğ_U [⊥]→ G_U acts, but ψ need not be Ğ_U-equivariant;
a cocycle θ_U exists such that ψ(ğ(ū)) = g(ψ(ū)) + θ_U(ğN); (*)
whence a *Mackey obstruction* class [θ_U] ∈ H¹(Ğ_U/N, (g_U/n)*).
We call *homiltonian* (Ğ_U [θ_U])-space a triple (Ū ∞ ψ) satisfying (*)

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment ψ : U → g^{*}_U need not exist;
 ψ exists on a certain cover Ũ → U, but G_U need not act on Ũ;
 a certain cover G̃_U → G_U acts, but ψ need not be G̃_U-equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class $[\theta_0] \in H^1(\tilde{G}_0/N, (\mathfrak{g}_0/n)^*)$. We call *hamiltonian* $(\tilde{G}_0, [\theta_0])$ -space a triple $(\tilde{U}, \omega, \psi)$ satisfying $(^*)$.

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\phi: U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover U \rightarrow U, but G_U need not act on U;
- a certain cover $\tilde{G}_U \xrightarrow{1} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
 - a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a Mackey obstruction class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)^{*}).
 We call hamiltonian (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivit

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
 - a cocycle θ_0 exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_0(\tilde{g}N);$ (*)
- whence a Mackey obstruction class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)^{*}).
 We call hamiltonian (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Berna

Imprimitivity

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
 - a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class $[\theta_U] \in H^1(\tilde{G}_U/N, (\mathfrak{g}_U/n)^*)$. We call *hamiltonian* $(\tilde{G}_U, [\theta_U])$ -space a triple $(\tilde{U}, \omega, \psi)$ satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Berna

Imprimitivit

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover G̃_U → G_U acts, but ψ need not be G̃_U-equivariant;
 a cocycle θ_U exists such that ψ(g̃(ũ)) = g(ψ(ũ)) + θ_U(g̃N); (*)
 whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 Ve call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Berna

Imprimitivit

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi : U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover G̃_U → G_U acts, but ψ need not be G̃_U-equivariant;
 a cocycle θ_U exists such that ψ(ğ(ũ)) = g(ψ(ũ)) + θ_U(ğN); (*)
 whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Berna

Imprimitivity

Mackey theory

Contact imprimitivity We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;

a cocycle θ_U exists such that ψ(ğ(ũ)) = g(ψ(ũ)) + θ_U(ğN); (*)
 whence a *Mackey obstruction* class [θ_U] ∈ H¹(Ğ_U/N, (g_U/n)*).
 ve call *hamiltonian* (Ğ_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be $\tilde{G}_U\text{-equivariant};$

a cocycle θ_U exists such that ψ(ğ(ũ)) = g(ψ(ũ)) + θ_U(ğN); (*)
 whence a *Mackey obstruction* class [θ_U] ∈ H¹(G_U/N, (g_U/n)*).

e call hamiltonian (\tilde{G}_{U} , [θ_{U}])-space a triple (\tilde{U} , ω , ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be $\tilde{G}_U\text{-equivariant};$
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class $[\theta_U] \in H^1(\tilde{G}_U/N, (\mathfrak{g}_U/\mathfrak{n})^*)$. Ve call *hamiltonian* ($\tilde{G}_U, [\theta_U]$)-space a triple (\tilde{U}, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 We call *hamiltonian* (G̃_U, [θ_U])-*space* a triple (Ũ, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be $\tilde{G}_U\text{-equivariant};$
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 /e call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi : U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class $[\theta_U] \in H^1(\tilde{G}_U/N, (\mathfrak{g}_U/\mathfrak{n})^*).$

Ve call *hamiltonian* (\tilde{G}_U , [θ_U])*-space* a triple (\tilde{U} , ω , ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class $[\theta_U] \in H^1(\tilde{G}_U/N, (\mathfrak{g}_U/\mathfrak{n})^*).$

We call *hamiltonian* (\tilde{G}_U , [θ_U])*-space* a triple (\tilde{U}, ω, ψ) satisfying (*).

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi:U\to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 We call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Theorem (Iglesias-Zemmour & Z. [2015])

Let (Y, τ, Ψ) be a homogeneous hamiltonian G_U -space with $\Psi(Y)_{|\mathfrak{n}} = U \in (\mathfrak{n}^*/N)^{G_U}$. Then a unique homogeneous hamiltonian $(\tilde{G}_U/N, [-\theta_U])$ -space (V, ω, ϕ) exists such that

$$\mathbf{Y} = \tilde{\mathbf{U}} \times_{\Gamma} \mathbf{V}.$$

Explicitly V is a typical fiber of the moment map $\Psi(\cdot)_{|\mathfrak{n}}: \mathrm{Y} o \mathrm{U}$

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi : U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 We call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Theorem (Iglesias-Zemmour & Z. [2015])

Let (Y, τ, Ψ) be a homogeneous hamiltonian G_U -space with $\Psi(Y)_{|\mathfrak{n}} = U \in (\mathfrak{n}^*/N)^{G_U}$. Then a unique homogeneous hamiltonian $(\tilde{G}_U/N, [-\theta_U])$ -space (V, ω, ϕ) exists such that

$$\mathbf{Y} = \tilde{\mathbf{U}} \times_{\Gamma} \mathbf{V}.$$

Explicitly V *is a typical fiber of the moment map* $\Psi(\cdot)_{|\mathfrak{n}} : \mathbf{Y} \to \mathbf{U}$ *.*

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi : U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 We call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Theorem (Iglesias-Zemmour & Z. [2015])

Let (Y, τ, Ψ) be a homogeneous hamiltonian G_U -space with $\Psi(Y)_{|\mathfrak{n}} = U \in (\mathfrak{n}^*/N)^{G_U}$. Then a unique homogeneous hamiltonian $(\tilde{G}_U/N, [-\theta_U])$ -space (V, ω, ϕ) exists such that

$$Y = \tilde{U} \times_{\Gamma} V.$$

Explicitly V *is a typical fiber of the moment map* $\Psi(\cdot)_{|\mathfrak{n}} : \mathbb{Y} \to \mathbb{U}$ *.*

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi : U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 We call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Theorem (Iglesias-Zemmour & Z. [2015])

Let (Y, τ, Ψ) be a homogeneous hamiltonian G_U -space with $\Psi(Y)_{|\mathfrak{n}} = U \in (\mathfrak{n}^*/N)^{G_U}$. Then a unique homogeneous hamiltonian $(\tilde{G}_U/N, [-\theta_U])$ -space (V, ω, ϕ) exists such that

$$Y = \tilde{U} \times_{\Gamma} V.$$

Explicitly V *is a typical fiber of the moment map* $\Psi(\cdot)_{|\mathfrak{n}} : \mathbb{Y} \to \mathbb{U}$ *.*

Symplectic Mackey Theory

Motivatior

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivit We are reduced to the *primary case*: a hamiltonian G_U -space (Y, τ, Ψ) such that $\Psi(Y)_{|n}$ is *one* N-orbit $U \in (n^*/N)^{G_U}$. So now G_U acts on U:

- this action is symplectic, but a moment $\psi : U \to \mathfrak{g}_U^*$ need not exist;
- ψ exists on a certain cover $\tilde{U} \xrightarrow{\Gamma} U$, but G_U need not act on \tilde{U} ;
- a certain cover $\tilde{G}_U \xrightarrow{\Gamma} G_U$ acts, but ψ need not be \tilde{G}_U -equivariant;
- a cocycle θ_U exists such that $\psi(\tilde{g}(\tilde{u})) = g(\psi(\tilde{u})) + \theta_U(\tilde{g}N);$ (*)
- whence a *Mackey obstruction* class [θ_U] ∈ H¹(G̃_U/N, (g_U/n)*).
 We call *hamiltonian* (G̃_U, [θ_U])-space a triple (Ũ, ω, ψ) satisfying (*).

Theorem (Iglesias-Zemmour & Z. [2015])

Let (Y, τ, Ψ) be a homogeneous hamiltonian G_U -space with $\Psi(Y)_{|\mathfrak{n}} = U \in (\mathfrak{n}^*/N)^{G_U}$. Then a unique homogeneous hamiltonian $(\tilde{G}_U/N, [-\theta_U])$ -space (V, ω, ϕ) exists such that

$$Y = \tilde{U} \times_{\Gamma} V.$$

Explicitly V *is a typical fiber of the moment map* $\Psi(\cdot)_{|\mathfrak{n}} : Y \to U$ *.*

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

More details. \tilde{U} and \tilde{G}_U are built as follows: Fix a $c \in U$ once and for all, and write N_c° for the identity component of the stabilizer N_c .

where $\Delta(k) = (k^{-1}, k)$ and $\pi(n, l) = nl$:

Obstruction step

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

More details. \tilde{U} and \tilde{G}_U are built as follows: Fix a $c \in U$ once and for all, and write N_c^o for the identity component of the stabilizer N_c .

- $\tilde{\rm U} \rightarrow {\rm U}$ is the covering ${\rm N}/{\rm N}_c^{\rm o} \rightarrow {\rm N}/{\rm N}_c$ with group $\Gamma = {\rm N}_c/{\rm N}_c^{\rm o}$.
- \tilde{G}_U is defined by the middle row of the following diagram, where $\Delta(k) = (k^{-1}, k)$ and $\pi(n, l) = nl$:

Obstruction step

Symplectic Mackey Theory

Motivation

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity **More details.** \tilde{U} and \tilde{G}_U are built as follows: Fix a $c \in U$ once and for all, and write N_c^o for the identity component of the stabilizer N_c .

- * $~\tilde{U} \rightarrow U$ is the covering $N/N_c^o \rightarrow N/N_c$ with group $\Gamma = N_c/N_c^o.$
- \tilde{G}_U is defined by the middle row of the following diagram, where $\Delta(k) = (k^{-1}, k)$ and $\pi(n, l) = nl$:

Motivatior

Symplectic induction

Mackey-Wigner

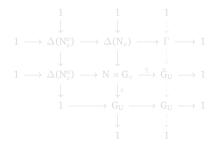
Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity **More details.** \tilde{U} and \tilde{G}_U are built as follows: Fix a $c \in U$ once and for all, and write N_c^o for the identity component of the stabilizer N_c .

- $\tilde{U} \rightarrow U$ is the covering $N/N_c^o \rightarrow N/N_c$ with group $\Gamma = N_c/N_c^o$.
- \tilde{G}_U is defined by the middle row of the following diagram, where $\Delta(k) = (k^{-1}, k)$ and $\pi(n, l) = nl$:



Obstruction step

Motivatior

Symplectic induction

Mackey-Wigner

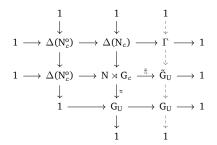
Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity **More details.** \tilde{U} and \tilde{G}_U are built as follows: Fix a $c \in U$ once and for all, and write N_c^o for the identity component of the stabilizer N_c .

- $\tilde{U} \rightarrow U$ is the covering $N/N_c^o \rightarrow N/N_c$ with group $\Gamma = N_c/N_c^o.$
- \tilde{G}_U is defined by the middle row of the following diagram, where $\Delta(k) = (k^{-1}, k)$ and $\pi(n, l) = nl$:



Obstruction step

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in \mathfrak{n}^*/N . If the tabilizer G_U is closed and U = N(c) has Mackey obstruction [θ], then here is a unique hamiltonian (G_U/N , [$-\theta$])-space (V, ω, φ) such that

$\mathrm{X} = \mathrm{Ind}_{\mathrm{G}_{\mathrm{U}}}^{\mathrm{G}} (ilde{\mathrm{U}} imes_{\Gamma} \mathrm{V})$.

where $\tilde{U} = N/N_c^0$ is the covering of U with group $\Gamma = N_c/N_c^0$. Every homogeneous hamiltonian ($\tilde{G}_U/N, [-\theta]$)-space V arises in this way.

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in \mathfrak{n}^*/N . If the stabilizer G_U is closed and U = N(c) has Mackey obstruction $[\theta]$, then here is a unique hamiltonian $(G_U/N, [-\theta])$ -space (V, ω, φ) such that

$\mathrm{X} = \mathrm{Ind}_{\mathrm{G}_{\mathrm{U}}}^{\mathrm{G}}(ilde{\mathrm{U}} imes_{\Gamma} \mathrm{V})$

where $\tilde{U} = N/N_c^0$ is the covering of U with group $\Gamma = N_c/N_c^0$. Every homogeneous hamiltonian ($\tilde{G}_U/N, [-\theta]$)-space V arises in this way.

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in n^*/N . If the stabilizer G_U is closed and U = N(c) has Mackey obstruction $[\theta]$, then there is a unique hamiltonian $(G_U/N, [-\theta])$ -space (V, ω, ϕ) such that

 $X = Ind_{G_{U}}^{G}(\tilde{U} \times_{\Gamma} V)$

where $\tilde{U} = N/N_c^0$ is the covering of U with group $\Gamma = N_c/N_c^0$. Every homogeneous hamiltonian ($\tilde{G}_U/N, [-\theta]$)-space V arises in this way.

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in \mathfrak{n}^*/N . If the stabilizer G_U is closed and U = N(c) has Mackey obstruction [θ], then there is a unique hamiltonian $(\tilde{G}_U/N, [-\theta])$ -space (V, ω, φ) such that

 $X = Ind_{G_U}^G (\tilde{U} \times_{\Gamma} V)$

where $U = N/N_c^o$ is the covering of U with group $\Gamma = N_c/N_c^o$. Every homogeneous hamiltonian ($G_U/N, [-\theta]$)-space V arises in this way.

Mackey theory

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in n^*/N . If the stabilizer G_{U} is closed and U = N(c) has Mackey obstruction [θ], then

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in \mathfrak{n}^*/N . If the stabilizer G_U is closed and U = N(c) has Mackey obstruction $[\theta]$, then there is a unique hamiltonian $(\tilde{G}_U/N, [-\theta])$ -space (V, ω, ϕ) such that

$$X = Ind_{G_U}^G (\tilde{U} \times_{\Gamma} V)$$

where $\hat{U} = N/N_c^o$ is the covering of U with group $\Gamma = N_c/N_c^o$. Every homogeneous hamiltonian (\tilde{G}_U/N , [$-\theta$])-space V arises in this way.

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in \mathfrak{n}^*/N . If the stabilizer G_U is closed and U = N(c) has Mackey obstruction $[\theta]$, then there is a unique hamiltonian $(\tilde{G}_U/N, [-\theta])$ -space (V, ω, ϕ) such that

$$X = Ind_{G_U}^G (\tilde{U} \times_{\Gamma} V)$$

where $\tilde{U} = N/N_c^o$ is the covering of U with group $\Gamma = N_c/N_c^o$. Every homogeneous hamiltonian ($\tilde{G}_U/N, [-\theta]$)-space V arises in this way.

Symplectic induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

Putting the last 3 theorems together, we get:

Theorem (Z.)

Let (X, σ, Φ) be a homogeneous hamiltonian G-space and $N \subset G$ a closed normal subgroup. Then $\Phi(X)$ sits above a G-orbit G(U) in \mathfrak{n}^*/N . If the stabilizer G_U is closed and U = N(c) has Mackey obstruction $[\theta]$, then there is a unique hamiltonian $(\tilde{G}_U/N, [-\theta])$ -space (V, ω, ϕ) such that

$$X = Ind_{G_U}^G(\tilde{U} \times_{\Gamma} V)$$

where $\tilde{U} = N/N_c^o$ is the covering of U with group $\Gamma = N_c/N_c^o$. Every homogeneous hamiltonian (\tilde{G}_U/N , $[-\theta]$)-space V arises in this way.

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups forced us to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

These are principal circle bundles P : $\tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then (T*G × $\tilde{Y}, \theta + \beta$) is a prequantum G × H-space over T*G × Y. Reducing by H produces an *induced* prequantum G-space (Ind^G_H \tilde{Y}, α_{ind}) over Ind^G_H Y admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

Let (\tilde{X}, α) be a prequantum G-space. The following are equivalent:

• \tilde{X} admits a transitive system of imprimitivity with base B = G/H;

• $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory

Contact imprimitivity

Trying to mimick Mackey analysis for *nonabelian* normal subgroups forced us to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

Contact imprimitivity theorem

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment nap $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

Let (\tilde{X}, α) be a prequantum G-space. The following are equivalent:

• \tilde{X} admits a transitive system of imprimitivity with base B = G/H;

• $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups forced us to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y}, β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y}, \theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

Let $(ilde{X}, lpha)$ be a prequantum G-space. The following are equivalent:

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups forced us to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y},β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y},\theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theoren

Let (\tilde{X}, α) be a prequantum G-space. The following are equivalent:

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups forced us to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y},β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y},\theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

Let (\tilde{X}, α) be a prequantum G-space. The following are equivalent:

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat Imprimitivity Mackey theory Contact

Contact imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for *nonabelian* normal subgroups forced us to remember that unitary representations really correspond to *prequantum* G-spaces (\tilde{X} , α).

These are principal circle bundles $P : \tilde{X} \to X$ with G-action preserving a connection 1-form α . The G-action, 2-form $d\alpha$, and 'contact' moment map $\langle \tilde{\Phi}(\tilde{x}), Z \rangle = \alpha(Z(\tilde{x}))$ descend and make X a hamiltonian G-space.

Suppose (\tilde{Y},β) is a prequantum H-space over Y. Then $(T^*G \times \tilde{Y},\theta + \beta)$ is a prequantum $G \times H$ -space over $T^*G \times Y$. Reducing by H produces an *induced* prequantum G-space $(Ind_H^G \tilde{Y}, \alpha_{ind})$ over $Ind_H^G Y$ admitting a transitive *system of imprimitivity*: a G-invariant, commutative Lie algebra \tilde{f}_{ind} of complete α -preserving vector fields. In fact $\tilde{f}_{ind} \simeq f_{ind}$.

Theorem

Let (\tilde{X}, α) be a prequantum G-space. The following are equivalent:

- \tilde{X} admits a transitive system of imprimitivity with base B = G/H;
- $\tilde{X} = Ind_{H}^{G} \tilde{Y}$ for some prequantum H-space (\tilde{Y}, β) (suitably unique).

Motivation

Symplection induction

Mackey-Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact imprimitivity

End!