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Abstract: Guillemin & Sternberg used symplectic induction to give a “Mackey-Wigner”
description of Hamiltonian G-spaces when G has a normal abelian semidirect factor
N. I will describe how this generalizes to a full “Mackey” description (and classification)
valid for arbitrary normal subgroups N, and explain why this is best done in the
setting of prequantum (contact) G-spaces.

*http://arxiv.org/abs/1410.7950
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Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

{X : irreducible unitary G-module}
isomorphism

To classify Irr(G) = , 3 steps:

@ As N-module, X must decompose into the irreducibles belonging
to a single G-orbit, G(U) = G/Gy C Irr(N).

® Then X = InngY, where Y € Irr(Gy) is N-primary (: as N-module
it involves U alone).

® ThenY=U®YV, with N-action: (given)® (trivial)
Gy-action: (projective) @ (projective).

In short, X = IndgU (U®V) and finding Irr(G) reduces to finding Irr(N)
and projective representations of subgroups of G/N.
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Given a closed subgroup H C G and a hamiltonian H-space (Y, 7, ¥),
Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

(Indy} Y, 6ind, ®ina)
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Given a closed subgroup H C G and a hamiltonian H-space (Y, T, ¥),
Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

(Indg} Y, ind, Pind)
as follows:

@ Endow M := T*G x Y with the 2-form w = db + 1, 6 = “(p, dq)”.
® Let H act on M by h(p,y) = (ph~1, h(y)).

© This has moment map §(p, y) = U (y) — q_1p|h (p € T’;G).

@ Define Inde:: $~1(0)/H (Marsden-Weinstein subquotient).

@© The G-action g(p, y) = (gp, y) and moment map ¢(p,y) = pqg~*

pass to the quotient; whence the claimed G-space structure.

N
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Theory

Proposition (Elementary properties)

Symplectic
induction

@ dim(Ind$Y) = 2dim(G/H) + dim(Y).

O M meets Im(Pipg) < M), meets Im(¥) (M € g*/G) (Frobenius).
(3) Indg Y is homogeneous = Y is homogeneous.

© IndS Y is a coadjoint orbit = Y is a coadjoint orbit.

@ IndSInd\ Y =IndSY (K: intermediate closed subgroup) (Stages).
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n!
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So M|, meets Y = M meets X, and Im(®;,q) = X by Frobenius.
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semidirect product of N = R>! (L. = 1) with the Lorentz group (C = 0).
Then n* identifies with R>! where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits

Xjn > v and, thus:

(a) X, is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)
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Then n* identifies with R>! where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits

Xjn > v and, thus:

(a) X, is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)
(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X, is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)
(d) X, is the origin and Y(= X) a coadjoint orbit of SO(3, 1)°.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).
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e Its base is its Gelfand spectrum B = {nonzero *-homomorphisms
b : A — C}, with topology of pointwise convergence.

* The base, B, is a locally compact G-space: gg(b)(a) = b(gglagx).
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Theory
Let G be a locally compact group (e.g. Lie), X a unitary G-module.
Definition

* A system of imprimitivity for X is a G-invariant, commutative
C*-subalgebra A C End(X).

Imprimitivity

* Its base is its Gelfand spectrum B = {nonzero *-homomorphisms
b : A — C}, with topology of pointwise convergence.
* The base, B, is a locally compact G-space: gg(b)(a) = b(gy L agx)-

* The system, A, is called transitive if G acts transitively on B.

Remark: The Gelfand transform a — a, defined by a(b) = b(a), is an
isomorphism A — Co(B). Its inverse E is a *-representation of Co(B) in
X such that

E(fogg ) = xE(gx '
i.e. a “system of imprimitivity” in the original Mackey-Blattner sense.
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The point of this is:

Theorem (Frobenius, Mackey)
The following are equivalent:

* X admits a transitive system of imprimitivity with base B = G/H
(H = Gy say);

* X= Indﬁ Y for some unitary H-module Y (suitably unique).
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Imprimitivity (H = Gb Sa}’);

e X= IndfI Y for some unitary H-module Y (suitably unique).

Explanation (case G/H admits a G-invariant measure):

1 Inde:: {L? sections s of associated bundle G xy Y — G/H}.
This indeed admits a system of imprimitivity, viz.: Ej,q(f)s = fs.

|l: Harder!
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Let (X, o, ®) be a hamiltonian G-space.
Definition

* A system of imprimitivity for X is a G-invariant, commutative
Lie subalgebra § ¢ C*(X), such that the hamiltonian vector field
Imprimitivity drag f is complete for all f € f.

* Its base is the image B of the “moment map” = : X — §7,
(n(z), f) = f(z). Each f € f descends to a function f on B.

* The base, B, is a G-subset of {*: (gg(b), f) = (b, f o gx)-

* The system, f, is called transitive if 1°) G acts transitively on B,
2°) n : X — B is C* for the homogeneous space structure on B.

Explanation: J := (f as an additive group) acts on X by f = edr28f
and = is formally a moment map for this action: drag(r(-), f) = dragf.
Stabilizers G, are closed so B’s homogeneous structure is well-defined.
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The following are equivalent for a hamiltonian G-space (X, o, ®):

e X admits a transitive system of imprimitivity with base B = G/H
H = Gy say);

* X = IndfI Y for a hamiltonian H-space (Y, T, ¥) (suitably unique).
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(H = Gy say);
e X = IndfI Y for a hamiltonian H-space (Y, T, ¥) (suitably unique).
Imprimitivity
Explanation:
f: Recall, Ind$ Y = (T*G x Y) //H. Now a G-equivariant projection

Tind Inde — G/H

arises by noting that the map T*G x Y — G/H sending T;G x Y to
gH is constant on H-orbits, hence passes to the (sub)quotient.
Then one checks that

find 1= mipa (C*(G/H))

is a transitive system of imprimitivity on Indg Y with base G/H.
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Siackey Symplectic imprimitivity theorem

Theory

Theorem (Z.)
The following are equivalent for a hamiltonian G-space (X, o, ®):
* X admits a transitive system of imprimitivity with base B = G/H
(H = Gy say);
e X = IndfI Y for a hamiltonian H-space (Y, T, ¥) (suitably unique).
Imprimitivity
Explanation:

|}: Formally this is Mackey-Wigner applied to the group ¥ x G and
abelian normal subgroup F. Explicitly Y is the “reduced space”
n=1(b)/F. Proof subtler as F need not be Lie, nor its action free
or propet. ..
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X g n* n*/N. ™
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G

r ® O On r N(C)
G G G

Hence this triviality (where Gy or Gy/N is known as the little group):

Theorem

(*) maps any homogeneous hamiltonian G-space (X, o, ®) onto some
G-orbit B = G(U) = G/Gy in n*/N. O
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Expectation: X should now admit a system of imprimitivity based on
B = G(U), and hence be induced. That’s rewarded:

Theorem (Z.)

Let U € n*/N be an orbit such that H := Gy is closed in G. Then H
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Explicitly V is a typical fiber of the moment map ¥(-), : Y — U.
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* Gy is defined by the middle row of the following diagram,

where A(k) = (k~1, k) and n(n, ) = nl:

1 1 1

! | :

1 — AN?) — AN) — T — 1

l L

1— AN9) — NxG, — Gy — 1

| I» i
l1——— Gy —— Gy — 1
l i

1 1
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X = Indg, (U xr V)

where U = N/N© is the covering of U with group I' = N /NQ. Every
homogeneous hamiltonian (Gy/N, [—61)-space V arises in this way.
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forced us to remember that unitary representations really correspond
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forced us to remember that unitary representations really correspond
to prequantum G-spaces (X, o).

These are principal circle bundles P : X — X with G-action preserving
a connection 1-form «. The G-action, 2-form do, and ‘contact’ moment
map (®(Z), Z) = a(Z(Z)) descend and make X a hamiltonian G-space.

Suppose (¥, f) is a prequantum H-space over Y. Then (T*G x Y,0 + B)
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Theorem
Let (X, «) be a prequantum G-space. The following are equivalent:

* X admits a transitive system of imprimitivity with base B = G/H;

e X= Indg Y for some prequantum H-space (¥, B) (suitably unique).
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