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Abstract: Guillemin & Sternberg used symplectic induction to give a “Mackey-Wigner”
description of Hamiltonian G-spaces when G has a normal abelian semidirect factor
N. I will describe how this generalizes to a full “Mackey” description (and classification)
valid for arbitrary normal subgroups N, and explain why this is best done in the
setting of prequantum (contact) G-spaces.
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Let G be a group and N a normal subgroup, so that

1 N G G/N 1.

G G

Questions about G often reduce to similar ones about N and G/N.

Classic example: Mackey Theory

To classify Irr(G) =

�

X : irreducible unitary G-module
	

isomorphism
, 3 steps:

1 As N-module, X must decompose into the irreducibles belonging
to a single G-orbit, G(U) = G/GU ⊂ Irr(N).

2 Then X = IndG
GU

Y, where Y ∈ Irr(GU) is N-primary (: as N-module
it involves U alone).

3 Then Y = U⊗ V, with N-action: (given)⊗(trivial)

GU-action: (projective)⊗(projective).

In short, X = IndG
GU

(U⊗ V) and finding Irr(G) reduces to finding Irr(N)
and projective representations of subgroups of G/N.
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Symplectic induction (G: Lie group)

Given a closed subgroup H ⊂ G and a hamiltonian H-space (Y, τ,Ψ),
Kazhdan-Kostant-Sternberg (1978) produce a hamiltonian G-space

(IndG
H Y,σind,Φind)

as follows:

1 Endow M := T∗G× Y with the 2-form ω = dθ + τ, θ = “〈p, dq〉”.

2 Let H act on M by h(p, y) = (ph−1, h(y)).

3 This has moment map ψ(p, y) = Ψ(y)− q−1p|h (p ∈ T∗qG).

4 Define IndG
H Y := ψ−1(0)/H (Marsden-Weinstein subquotient).

5 The G-action g(p, y) = (gp, y) and moment map φ(p, y) = pq−1

pass to the quotient; whence the claimed G-space structure.
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Symplectic induction (G: Lie group)

Proposition (Elementary properties)

1 dim(IndG
H Y) = 2 dim(G/H) + dim(Y).

2 M meets Im(Φind)⇔ M|h meets Im(Ψ) (M ∈ g∗/G) (Frobenius).

3 IndG
H Y is homogeneous⇒ Y is homogeneous.

4 IndG
H Y is a coadjoint orbit⇒ Y is a coadjoint orbit.

5 IndG
K IndK

H Y = IndG
H Y (K: intermediate closed subgroup) (Stages).
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Symplectic Mackey-Wigner

Theorem (Guillemin-Sternberg 1983++)

Let N ⊂ G be a closed connected normal abelian subgroup. Pick u ∈ n∗

and write H = Gu . Then Y 7→ X = IndG
H Y defines a bijection between

(a) coadjoint orbits X of G such that X|n ⊃ {u};

(b) coadjoint orbits Y of H such that Y|n = {u}.

The inverse map sends X = G(x ) to Y = H(x|h) ∼= (x 7→ x|n)−1(u)/N
(x|n = u). Note that Y is a homogeneous symplectic manifold of H/N.
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Indeed, for Z ∈ n: 〈exp(Z)(x ), Z′〉 =




x ,
∑∞

n=0
(−1)n

n! ad(Z)n(Z′)
�

= 〈x , Z′ − [Z, Z′]〉 = 〈x + Z(x ), Z′〉. So N(x ) ⊃ x + n(x ).
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So M|h meets Y⇒ M meets X, and Im(Φind) = X by Frobenius.
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Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Symplectic Mackey-Wigner

Example: Poincaré orbits

Consider

G =
§

g =
�

L C
0 1

�

:
L ∈ SO(3, 1)o

C ∈ R3,1

ª

,

semidirect product of N = R3,1 (L = 1) with the Lorentz group (C = 0).
Then n∗ identifies with R3,1 where G acts by g(P) = LP. The theorem
classifies the coadjoint orbits X of G in terms of the possible orbits
X|n 3 u and Y, thus:

(a) X|n is half a timelike hyperboloid and Y a coadjoint orbit of SO(3)

(b) X|n is a half-cone and Y a coadjoint orbit of E(2)

(c) X|n is a spacelike hyperboloid and Y a coadjoint orbit of SL(2, R)

(d) X|n is the origin and Y(= X) a coadjoint orbit of SO(3, 1)o.

This is of course completely parallel with the representation theory of
G as worked out by Wigner (1939).

5 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Application: Symplectic Kirillov-Bernat theory

Theorem (Z.)
Let G be an exponential Lie group (: exp is a diffeomorphism g→ G)
and let X = G(x ) be a coadjoint orbit of G. Then X is monomial, i.e. G
admits a closed connected subgroup H, such that

X = IndG
H{x|h}. (*)

Sketch of proof. A lemma of Takenouchi (1957) ensures that
g/ ann(X) admits an abelian ideal which is not central. Its preimage n
in g is an X-abelian ideal which is not X-central. So the theorem gives
X = IndG

G1
X1 where G1 is the stabilizer of x|n and X1 = G1(x|g1). One
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Imprimitivity (motivation)

Let G be a locally compact group (e.g. Lie), X a unitary G-module.

Definition

• A system of imprimitivity for X is a G-invariant, commutative
C∗-subalgebra A ⊂ End(X).

• Its base is its Gelfand spectrum B = {nonzero ∗-homomorphisms
b : A→ C}, with topology of pointwise convergence.

• The base, B, is a locally compact G-space: gB(b)(a) = b(g−1
X agX).

• The system, A, is called transitive if G acts transitively on B.
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• The base, B, is a locally compact G-space: gB(b)(a) = b(g−1
X agX).

• The system, A, is called transitive if G acts transitively on B.

Remark: The Gelfand transform a 7→ â , defined by â(b) = b(a), is an
isomorphism A→ C0(B). Its inverse E is a ∗-representation of C0(B) in
X such that

E(f ◦ g−1
B ) = gXE(f )g−1

X ,

i.e. a “system of imprimitivity” in the original Mackey-Blattner sense.
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The point of this is:

Theorem (Frobenius, Mackey)

The following are equivalent:

• X admits a transitive system of imprimitivity with base B = G/H
(H = Gb say);

• X = IndG
H Y for some unitary H-module Y (suitably unique).
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• X admits a transitive system of imprimitivity with base B = G/H
(H = Gb say);

• X = IndG
H Y for some unitary H-module Y (suitably unique).

Explanation (case G/H admits a G-invariant measure):

⇑: IndG
H Y := {L2 sections s of associated bundle G×H Y→ G/H}.

This indeed admits a system of imprimitivity, viz.: Eind(f )s = fs .

⇓: Harder!
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Symplectic imprimitivity

Let (X,σ,Φ) be a hamiltonian G-space.

Definition

• A system of imprimitivity for X is a G-invariant, commutative
Lie subalgebra f ⊂ C∞(X), such that the hamiltonian vector field
drag f is complete for all f ∈ f.

• Its base is the image B of the “moment map” π : X→ f∗,
〈π(x ), f 〉 = f (x ). Each f ∈ f descends to a function ḟ on B.

• The base, B, is a G-subset of f∗: 〈gB(b), f 〉 = 〈b, f ◦ gX〉.

• The system, f, is called transitive if 1◦) G acts transitively on B,
2◦) π : X→ B is C∞ for the homogeneous space structure on B.
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• The base, B, is a G-subset of f∗: 〈gB(b), f 〉 = 〈b, f ◦ gX〉.

• The system, f, is called transitive if 1◦) G acts transitively on B,
2◦) π : X→ B is C∞ for the homogeneous space structure on B.
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Let (X,σ,Φ) be a hamiltonian G-space.

Definition

• A system of imprimitivity for X is a G-invariant, commutative
Lie subalgebra f ⊂ C∞(X), such that the hamiltonian vector field
drag f is complete for all f ∈ f.

• Its base is the image B of the “moment map” π : X→ f∗,
〈π(x ), f 〉 = f (x ). Each f ∈ f descends to a function ḟ on B.

• The base, B, is a G-subset of f∗: 〈gB(b), f 〉 = 〈b, f ◦ gX〉.

• The system, f, is called transitive if 1◦) G acts transitively on B,
2◦) π : X→ B is C∞ for the homogeneous space structure on B.

Explanation: F := (f as an additive group) acts on X by fX = edrag f

and π is formally a moment map for this action: drag〈π(·), f 〉 = drag f .
Stabilizers Gb are closed so B’s homogeneous structure is well-defined.
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Symplectic imprimitivity theorem

Theorem (Z.)
The following are equivalent for a hamiltonian G-space (X,σ,Φ):

• X admits a transitive system of imprimitivity with base B = G/H
(H = Gb say);

• X = IndG
H Y for a hamiltonian H-space (Y, τ,Ψ) (suitably unique).
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• X = IndG
H Y for a hamiltonian H-space (Y, τ,Ψ) (suitably unique).

Explanation:

⇑: Recall, IndG
H Y = (T∗G× Y)//H. Now a G-equivariant projection

πind : IndG
H Y→ G/H

arises by noting that the map T∗G× Y→ G/H sending T∗qG× Y to
qH is constant on H-orbits, hence passes to the (sub)quotient.
Then one checks that

find := π∗ind(C∞(G/H))

is a transitive system of imprimitivity on IndG
H Y with base G/H.
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Theorem (Z.)
The following are equivalent for a hamiltonian G-space (X,σ,Φ):

• X admits a transitive system of imprimitivity with base B = G/H
(H = Gb say);

• X = IndG
H Y for a hamiltonian H-space (Y, τ,Ψ) (suitably unique).

Explanation:

⇓: Formally this is Mackey-Wigner applied to the group F o G and
abelian normal subgroup F. Explicitly Y is the “reduced space”
π
−1(b)/F. Proof subtler as F need not be Lie, nor its action free

or proper. . .
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Little group step

From now on, suppose N ⊂ G is a closed normal subgroup. Then

• G acts naturally on N and n by conjugation.

• G acts naturally on n∗ by contragredience.

• G respects the partition of n∗ into (coadjoint) N-orbits.

• So G acts in the orbit space n∗/N, and we have a composition of
G-equivariant maps

X g∗ n∗ n∗/N.
Φ

G

(·)|n
G

N(·)

G G

(*)

Hence this triviality (where GU or GU/N is known as the little group):

Theorem
(*) maps any homogeneous hamiltonian G-space (X,σ,Φ) onto some
G-orbit B = G(U) = G/GU in n∗/N.
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Induction step

Expectation: X should now admit a system of imprimitivity based on
B = G(U), and hence be induced. That’s rewarded:

Theorem (Z.)
Let U ∈ n∗/N be an orbit such that H := GU is closed in G. Then H
contains N, and Y 7→ X = IndG

H Y defines a bijection between

(a) homogeneous hamiltonian G-spaces (X,σ,Φ) such that Φ(X)|n ⊃ U

(b) homogeneous hamiltonian H-spaces (Y, τ,Ψ) such that Ψ(Y)|n = U

The inverse map sends X to the Kazhdan-Kostant-Sternberg reduced
space of X at U: the quotient of Φ(·)−1

|n (U) by its characteristic foliation.
Moreover

X is a coadjoint orbit of G ⇐⇒ Y is a coadjoint orbit of H.

This reduces us to the primary case: Y sits above one (GU-stable)
N-orbit, U ∈ (n∗/N)GU .
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Obstruction step

We are reduced to the primary case: a hamiltonian GU-space (Y, τ,Ψ)
such that Ψ(Y)|n is one N-orbit U ∈ (n∗/N)GU . So now GU acts on U:

• this action is symplectic, but a moment ψ : U→ g∗U need not exist;

• ψ exists on a certain cover Ũ Γ→ U, but GU need not act on Ũ;

• a certain cover G̃U
Γ→ GU acts, but ψ need not be G̃U-equivariant;

• a cocycle θU exists such that ψ(g̃(ũ)) = g(ψ(ũ)) + θU(g̃N); (*)

• whence a Mackey obstruction class [θU] ∈ H1(G̃U/N, (gU/n)∗).

We call hamiltonian (G̃U, [θU])-space a triple (Ũ,ω,ψ) satisfying (*).

Theorem (Iglesias-Zemmour & Z. [2015])
Let (Y, τ,Ψ) be a homogeneous hamiltonian GU-space with Ψ(Y)|n =
U ∈ (n∗/N)GU . Then a unique homogeneous hamiltonian (G̃U/N, [−θU])
-space (V,ω,φ) exists such that

Y = Ũ×Γ V.

Explicitly V is a typical fiber of the moment map Ψ(·)|n : Y→ U.

13 / 16
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• ψ exists on a certain cover Ũ Γ→ U, but GU need not act on Ũ;
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• ψ exists on a certain cover Ũ Γ→ U, but GU need not act on Ũ;
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Y = Ũ×Γ V.

Explicitly V is a typical fiber of the moment map Ψ(·)|n : Y→ U.

13 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Obstruction step

We are reduced to the primary case: a hamiltonian GU-space (Y, τ,Ψ)
such that Ψ(Y)|n is one N-orbit U ∈ (n∗/N)GU . So now GU acts on U:

• this action is symplectic, but a moment ψ : U→ g∗U need not exist;

• ψ exists on a certain cover Ũ Γ→ U, but GU need not act on Ũ;
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• a certain cover G̃U
Γ→ GU acts, but ψ need not be G̃U-equivariant;

• a cocycle θU exists such that ψ(g̃(ũ)) = g(ψ(ũ)) + θU(g̃N); (*)
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Theorem (Iglesias-Zemmour & Z. [2015])
Let (Y, τ,Ψ) be a homogeneous hamiltonian GU-space with Ψ(Y)|n =
U ∈ (n∗/N)GU . Then a unique homogeneous hamiltonian (G̃U/N, [−θU])
-space (V,ω,φ) exists such that

Y = Ũ×Γ V.
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Theorem (Iglesias-Zemmour & Z. [2015])
Let (Y, τ,Ψ) be a homogeneous hamiltonian GU-space with Ψ(Y)|n =
U ∈ (n∗/N)GU . Then a unique homogeneous hamiltonian (G̃U/N, [−θU])
-space (V,ω,φ) exists such that

Y = Ũ×Γ V.
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• whence a Mackey obstruction class [θU] ∈ H1(G̃U/N, (gU/n)∗).

We call hamiltonian (G̃U, [θU])-space a triple (Ũ,ω,ψ) satisfying (*).
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• ψ exists on a certain cover Ũ Γ→ U, but GU need not act on Ũ;
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• whence a Mackey obstruction class [θU] ∈ H1(G̃U/N, (gU/n)∗).

We call hamiltonian (G̃U, [θU])-space a triple (Ũ,ω,ψ) satisfying (*).
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Y = Ũ×Γ V.

Explicitly V is a typical fiber of the moment map Ψ(·)|n : Y→ U.
13 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Obstruction step

We are reduced to the primary case: a hamiltonian GU-space (Y, τ,Ψ)
such that Ψ(Y)|n is one N-orbit U ∈ (n∗/N)GU . So now GU acts on U:

• this action is symplectic, but a moment ψ : U→ g∗U need not exist;

• ψ exists on a certain cover Ũ Γ→ U, but GU need not act on Ũ;
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More details. Ũ and G̃U are built as follows: Fix a c ∈ U once and for
all, and write No

c for the identity component of the stabilizer Nc .

• Ũ→ U is the covering N/No
c → N/Nc with group Γ = Nc/No

c .

• G̃U is defined by the middle row of the following diagram,
where Δ(k) = (k−1, k) and π(n , l) = nl :

1 1 1

1 Δ(No
c) Δ(Nc) Γ 1

1 Δ(No
c) N o Gc G̃U 1

1 GU GU 1

1 1

π̃

π
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c for the identity component of the stabilizer Nc .

• Ũ→ U is the covering N/No
c → N/Nc with group Γ = Nc/No

c .

• G̃U is defined by the middle row of the following diagram,
where Δ(k) = (k−1, k) and π(n , l) = nl :

1 1 1

1 Δ(No
c) Δ(Nc) Γ 1

1 Δ(No
c) N o Gc G̃U 1

1 GU GU 1

1 1

π̃

π
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Synopsis

Putting the last 3 theorems together, we get:

Theorem (Z.)
Let (X,σ,Φ) be a homogeneous hamiltonian G-space and N ⊂ G a closed
normal subgroup. Then Φ(X) sits above a G-orbit G(U) in n∗/N. If the
stabilizer GU is closed and U = N(c) has Mackey obstruction [θ], then
there is a unique hamiltonian (G̃U/N, [−θ])-space (V,ω,φ) such that

X = IndG
GU

(Ũ×Γ V)

where Ũ = N/No
c is the covering of U with group Γ = Nc/No

c . Every
homogeneous hamiltonian (G̃U/N, [−θ])-space V arises in this way.
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where Ũ = N/No
c is the covering of U with group Γ = Nc/No

c . Every
homogeneous hamiltonian (G̃U/N, [−θ])-space V arises in this way.

15 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Synopsis

Putting the last 3 theorems together, we get:

Theorem (Z.)
Let (X,σ,Φ) be a homogeneous hamiltonian G-space and N ⊂ G a closed
normal subgroup. Then Φ(X) sits above a G-orbit G(U) in n∗/N. If the
stabilizer GU is closed and U = N(c) has Mackey obstruction [θ], then
there is a unique hamiltonian (G̃U/N, [−θ])-space (V,ω,φ) such that

X = IndG
GU
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Contact imprimitivity theorem

Trying to mimick Mackey analysis for nonabelian normal subgroups
forced us to remember that unitary representations really correspond
to prequantum G-spaces (X̃, α).

These are principal circle bundles P : X̃→ X with G-action preserving
a connection 1-form α. The G-action, 2-form dα, and ‘contact’ moment
map 〈Φ̃(x̃ ), Z〉 = α(Z(x̃ )) descend and make X a hamiltonian G-space.

Suppose (Ỹ, β) is a prequantum H-space over Y. Then (T∗G× Ỹ, θ + β)
is a prequantum G× H-space over T∗G× Y. Reducing by H produces
an induced prequantum G-space (IndG

H Ỹ, αind) over IndG
H Y admitting a

transitive system of imprimitivity: a G-invariant, commutative Lie
algebra f̃ind of complete α-preserving vector fields. In fact f̃ind ' find.

Theorem
Let (X̃, α) be a prequantum G-space. The following are equivalent:

• X̃ admits a transitive system of imprimitivity with base B = G/H;

• X̃ = IndG
H Ỹ for some prequantum H-space (Ỹ, β) (suitably unique).
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Suppose (Ỹ, β) is a prequantum H-space over Y. Then (T∗G× Ỹ, θ + β)
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16 / 16



Symplectic
Mackey
Theory

Motivation

Symplectic
induction

Mackey-
Wigner

Kirillov-Bernat

Imprimitivity

Mackey theory

Contact
imprimitivity

Contact imprimitivity theorem

Trying to mimick Mackey analysis for nonabelian normal subgroups
forced us to remember that unitary representations really correspond
to prequantum G-spaces (X̃, α).

These are principal circle bundles P : X̃→ X with G-action preserving
a connection 1-form α. The G-action, 2-form dα, and ‘contact’ moment
map 〈Φ̃(x̃ ), Z〉 = α(Z(x̃ )) descend and make X a hamiltonian G-space.
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H Ỹ for some prequantum H-space (Ỹ, β) (suitably unique).
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